PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the unit weight of organic soils from a CPTM using an Artificial Neural Networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wyznacznie ciężaru objętościowego gruntu organicznego na podstawie badań CPTM z zastosowaniem sztucznych sieci neuronowych
Języki publikacji
EN
Abstrakty
EN
This paper discusses the use of mechanical cone penetration test CPTM for estimating the soil unit weight of selected organic soils in Rzeszow site, Poland. A search was made for direct relationships between the empirically determined the soil unit weight value and cone penetration test leading parameters (cone resistance qc, sleeve friction fs. The selected, existing models were also analysed in terms of suitability for estimating the soil unit weight and tests were performed to predict the value soil unit weight of local, different organic soils. Based on own the regression analysis, the relationships between empirically determined values of soil unit weight and leading parameters cone penetration test were determined. The results of research and analysis have shown that both existing models and new, determined regression analysis methods are poorly matched to the unit weight values determined in laboratory, the main reason may be the fact that organic soils are characterized by an extremely complicated, diverse and heterogeneous structure. This often results in a large divergence and lack of repeatability of results in a satisfactorily range. Therefore, in addition, to improve the predictive performances of the relationships, analysis using the artificial neural networks (ANN) was carried out.
PL
W artykule zaprezentowano możliwości zastosowania wyników badań terenowych uzyskanych za pomocą stożkowej sondy statycznej CPTM (ze stożkiem mechanicznym) do wyznaczania ciężaru objętościowego wybranych gruntów organicznych zlokalizowanych na terenie Rzeszowa. Głównym celem prowadzonych badań było poszukiwanie bezpośrednich zależności pomiędzy między wyznaczonymi w warunkach laboratoryjnych wartościami ciężaru objętościowego gruntu γt a parametrami wiodącymi dla badania sondą statyczną CPTM, którymi są: opór gruntu podczas zagłębiania stożka qc oraz opór tarcia na tulei ciernej fs. Testy laboratoryjne wykonano na próbkach o nienaruszonej strukturze, pobranych z otworów kontrolnych umiejscowionych w bezpośrednim sąsiedztwie punktów sondowania, co pozwoliło na pozyskanie reprezentatywnych próbek gruntów o szerokim spectrum zawartości części organicznych od 5,02 do 84,93%. Wykorzystując metodę standardowej analizy regresji określono zależności między empirycznie wyznaczonymi wartościami ciężaru objętościowego badanych gruntów organicznych, a parametrami wyznaczonymi za pomocą sondy statycznej w warunkach in situ. Wykorzystano również szereg modeli literaturowych, opracowanych przez prezentujących je badaczy dla różnych ośrodków gruntowych i parametrów wiodących. Niestety, analiza regresji wykazała, że zarówno istniejące modele, jak i nowe są słabo dopasowane do wartości ciężaru objętościowego wyznaczonych w laboratorium. Głównym powodem może być fakt, że grunty organiczne charakteryzują się niezwykle skomplikowaną budową, różnorodną i niejednorodną strukturą, a przede wszystkim bardzo zróżnicowaną zawartością części organicznych, które mogą lokalnie różnić się genezą czy składem chemicznym. Czynniki te mają wpływ na wyjątkowo dużą rozbieżność i brak powtarzalności uzyskiwanych wyników w zadowalającym zakresie. Dlatego, dodatkowo, aby poprawić predykcyjne działanie zależności, przeprowadzono analizę z wykorzystaniem sztucznych sieci neuronowych (SSN). Porównanie wyników zastosowania standardowej regresji i sieci neuronowych w celu prognozowania ciężaru objętościowego wybranych gruntów organicznych na podstawie wyników sondowania statycznego wykazało, że sieci neuronowe są dokładniejsze. Maksymalne wartości median uzyskanych w analizach statystycznych współczynników determinacji (R2) testowanych modeli wynosiły odpowiednio 0,353 i 0,564. Wynik wykorzystania sieci neuronowych nie jest zadowalający, ale bardzo obiecujący. W związku z tym, planowana jest kontynuacja prac z wykorzystaniem analizy za pomocą sztucznych sieci neuronowych, lecz z zastosowaniem różnych kryteriów kategoryzowania lokalnych gruntów organicznych.
Rocznik
Strony
259--281
Opis fizyczny
Bibliogr. 46 poz., il., tab.
Twórcy
  • Rzeszow University of Technology, Faculty of Civil and Environmental Engineering and Architecture Civil Engineering, Rzeszow, Poland
  • Rzeszow University of Technology, Faculty of Civil and Environmental Engineering and Architecture Civil Engineering, Rzeszow, Poland
Bibliografia
  • [1] EN 1997-1:2008. Eurocode 7: Geotechnical Design - Part 1: General rules.
  • [2] EN 1997-2:2009. Eurocode 7: Geotechnical Design - Part 2: Ground Investigation and Testing.
  • [3] P.K. Robertson, K.L. Cabal, “Guide to Cone Penetration Testing for Geotechnical Engineering”. Gregg Drilling & Testing, Inc, 5-th Edition, 2012.
  • [4] Y. Cal, “Soil classification by neural-network”, Adv. Eng. Softw. 22: pp. 95-97, 1995.
  • [5] A. Goh, “Empirical design in geotechnics using neural networks”, Geotechnique 45: pp. 709-714, 1995. https://doi.org/10.1680/geot.1995.45.4.709
  • [6] M. Shahin, M. Jaksa, H. Maier, “Artificial neural network applications in geotechnical engineering”, Aust. Geomech. 36: 49-62, 2001.
  • [7] N. Nawari, R, Liang, J. Nusairat, “Artificial intelligence techniques for the design and analysis of deep foundations”. Electron. J. Geotech. Eng. 4: pp 1-21, 1999. Available online: http://geotech.civeng.okstate.edu/ejge/ppr9909/index.html (accessed on).
  • [8] D. Penumadu, C. Jean-Lou, “Geomaterial modeling using artificial neural networks”, In Artificial Neural Networks for Civil Engineers: Fundamentals and Applications, ASCE: Reston, WV, USA, pp 160-184, 1997.
  • [9] C.H. Zhiming, M. Guotao, Z. Ye, Z. Yanjie, H. Hengyang, “The application of artificial neural network in geotechnical engineering”, In Proceedings of the 2018 International Conference on Civil and Hydraulic Engineering (IConCHE 2018), Qingdao, China, 23-25 November 2018; IOP Publishing: Bristol, UK, 2018; doi: http://dx.doi.org/10.1088/1755-1315/189/2/022054
  • [10] Z. Wang, Y. Li, “Correction of soil parameters in calculation of embankment settlement using a BP network back-analysis model”, Eng. Geol. 91: pp. 168-177, 2007. doi:10.1016/j.enggeo.2007.01.007
  • [11] M.J. Sulewska, “Applying Artificial Neural Networks for analysis of geotechnical problems”, Comput. Assist. Methods Eng. Sci. 18: pp. 230-241, 2011.
  • [12] M.J. Sulewska, “Artificial Neural modeling of compaction characteristics of cohesionless soil”, Comput. Assist. Methods Eng. Sci. 17: pp. 27-40, 2010.
  • [13] M.J. Sulewska, “Artificial Neural Networks in the Evaluation of Non-Cohesive Soil Compaction Parameters”, Committee Civil Engineering of the Polish Academy of Sciences: Warsaw, Poland, 2009.
  • [14] M.J. Sulewska, “Prediction Models for Minimum and Maximum Dry Density of Non-Cohesive Soils”, Pol. J. Environ. Stud. 19: pp. 797-804, 2010.
  • [15] M. Ochmański, J. Bzówka, “Selected examples of the use of artificial neural networks in geotechnics”, Civ. Environ. Eng. 4: pp. 287-294, 2013.
  • [16] A. Borowiec, K. Wilk, “Prediction of consistency parameters of fen soils by neural networks”, Comput. Assist. Methods Eng. Sci.21: pp. 67-75, 2014.
  • [17] M. Kłos, M.J. Sulewska, Z. Waszczyszyn, “Neural identification of compaction characteristics for granular soils”, Comput. Assist. Methods Eng. Sci.18: pp. 265-273, 2011.
  • [18] G. Wrzesiński, M.J. Sulewska, Z. Lechowicz, “Evaluation of the Change in Undrained Shear Strength in Cohesive Soils due to Principal Stress Rotation Using an Artificial Neural Network”, Appl. Sci. 8: p. 781, 2018. https://doi.org/10.3390/app8050781
  • [19] Z. Lechowicz, M. Fukue, S. Rabarijoely, M.J. Sulewska, “Evaluation of the Undrained Shear Strength of Organic Soils from a Dilatometer Test Using Artificial Neural Networks”, Appl. Sci. 8: p. 1395, 2018. https://doi.org/10.3390/app8081395
  • [20] S. Rabarijoely, “A new Approach to the Determination of Mineral and Organic Soil Types Based on Dilatometer Tests (DMT)”, Appl. Sci.8 (11):, p. 2249, 2018. https://doi.org/10.3390/app8112249
  • [21] G. Straż, A. Borowiec, “Estimating the Unit Weight of Local Organic Soils from Laboratory Tests Using Artificial Neural Networks”, Appl. Sci. 10 (7): p. 2261, 2020. http://dx.doi.org/10.3390/app10072261
  • [22] Voivodship Inspectorate for Environmental Protection in Rzeszów, “Report on the state of the environment of the Podkarpackie Voivodeship in 2013-2015”, Environmental Monitoring Library, Rzeszow, 2016.
  • [23] Geotech, Ltd. Department of Geological Services Design and Construction and the Environment, “Geological and Engineering Geological Conditions for Recognition - Engineering for the Construction of Multi-Storey Building at UL; Witolda in Rzeszów”: Rzeszow, Poland, 2010.
  • [24] PN-EN ISO 17892-2:2014. Geotechnical Investigation and Testing - Laboratory Testing of Soil - Part 2: Determination of Bulk Density.
  • [25] PN-EN ISO 22476-12:2009. Geotechnical Investigation and Testing - Field Testing - Part 12: Mechanical Cone Penetration Test.
  • [26] L. Wysokiński, W. Kotlicki, T. Godlewski, “Geotechnical design according to Eurocode 7”, Guide. ITB, Warsaw, 2011.
  • [27] P.W. Mayne, G.J. Rix, “Correlations Between Shear Wave Velocity and Cone Tip Resistance in Clays”, Soils and Foundations 35 (2): pp. 107-110, 1995.
  • [28] P.W. Mayne, “The 2nd James K. Mitchell Lecture: Undisturbed Sand Strength from Seismic Cone Tests,” Geomechanics and Geoengineering Vol. 1, No. 4: pp. 239-247, 2006.
  • [29] P.W. Mayne, “Cone Penetration Testing”, “A Synthesis of Highway Practice”, NCHRP Synthesis 368; Transportation Research Board: Washington, DC, USA, 2007.
  • [30] P.W. Mayne, J. Peuchen, D. Bouwmeester, “Soil unit weight estimation from CPTs”, In Proceedings of the 2nd International Symposium on Cone Penetration Testing, Huntington Beach, CA, USA, 9-11 May, pp 169-176, 2010.
  • [31] P.W. Mayne, “Evaluating effective stress parameters and undrained shear strengths of soft-firm clays from CPTu and DMT”, Geotechnical and Geophysical Site Characterisation 5 - Lehane, Acosta-Martínez & Kelly (Eds) © Australian Geomechanics Society, Sydney, Australia, 2016.
  • [32] P. Robertson, K. Cabal, “Estimating soil unit weight from CPT”, In Proceedings of the 2nd International
  • [33] Symposium on Cone Penetration Testing, Huntington Beach, CA, USA, 9-11 May, 2010.
  • [34] A.T. Ozer, S.F. Bartlett, E.C. Lawton, “CPTU and DMT for estimating soil unit weight of Lake Bonneville Clay”, Geotechnical and Geophysical Site Characterization 4: pp. 291-296, 2012.
  • [35] R.K. Ghanekar, “Unit weight estimation from CPT for Indian offshore soft calcareous clay”, in: “CPTU and DMT in soft clays and organic soils” (eds. Z. Młynarek and J. Wierzbicki), Exlemplum Press, Poznań, Poland, pp. 31-44, 2014.
  • [36] M.S. Kovacevic, K.G. Gavin, C. Reale, L. Libric, “The use of neural networks to develop CPT correlations for soils in northern Croatia”, Cone Penetration Testing 2018 - Hicks, Pisano & Peuchen (eds), Delft University of Technology, June 2018, The Netherlands.
  • [37] G. Straż, “Estimating soil unit weight from CPT for selected organic soils”, in: “Selected technical, economic and ecological aspects of contemporary construction” (eds. K. Pujer), Exante, pp. 63-77, 2016.
  • [38] S.O. Haykin, “Neural Networks and Learning Machines”, 3rd ed.; Pearson Education: Upper Saddle River, NJ, USA, 798, 2009.
  • [39] M.T. Hagan, H.B. Demuth, M.H. Beale, “Neural Network Design”, PWS Publishing: Boston, MA, USA, 1996.
  • [40] D. Marquardt, “An Algorithm for Least-Squares Estimation of Nonlinear Parameters”, SIAM J. Appl. Math.3: 11, pp. 431-441, 1963.
  • [41] M.T. Hagan, M. Menhaj, “Training feed-forward networks with the Marquardt algorithm”. IEEE Trans. Neural Netw. 5: pp. 989-993, 1994.
  • [42] J.E. Dennis, R.B. Schnabel, “Numerical Methods for Unconstrained Optimization and Nonlinear Equations”, Prentice-Hall: Englewood Clis, NJ, USA, 1983.
  • [43] D.J.C. MacKay, “Bayesian interpolation”, Neural Comput.4: pp. 415-447, 1992.
  • [44] Beale, M.H.; Hagan, M.T.; Demuth, H.B.Neural Network ToolboxUser’s Guide; TheMathWorks: Natick, MA,USA, 2010.
  • [45] GEO5. Geotechnical software. Fine - Civil Engineering Softwere. https://www.finesoftware.pl/.
  • [46] Statistica 13.3. TIBCO Software Inc. https://www.statsoft.pl/Czytelnia .
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9fe1bcd7-179b-42a6-a626-f479e7dfc92f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.