PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancing Thermal Performance of Hot Storage Tanks through Chimney-Type Electric Heating and Natural Circulation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hot storage tanks (HST) are known for their high energy consumption, attributed to variations in usage, heat dissipation within the tank, and heat losses to the surroundings. This study proposes a chimney-type electrically heated HST, which is investigated under static mode to enhance its thermal performance. Different natural circulation areas (chimney areas) with large (9.5 cm diameter), medium (2.5 cm diameter), and small (1.5 cm diameter) sizes were utilized to examine the effect of natural circulation on the HST performance. Additionally, the influence of chimney insulation on the HST performance was also studied. The experiments revealed that the chimney significantly affected the thermal stratification within the tank. Different chimney contact diameters (9.5 cm, 2.5 cm, and 1.5 cm) were tested, showing varying degrees of thermal stratification. The results indicated that smaller chimney contact diameters led to higher thermal stratification and more rapid heating of the top layer temperatures. However, the impact of insulation on thermal performance was inconclusive, suggesting the need for more effective insulation and further investigation into the dynamic mode of operation. The findings also highlighted the faster heating of the top outer layer compared to the larger diameter, emphasizing the significance of the chimney type electrical heater in the hot storage tank.
Twórcy
  • Department of Mechanical Engineering, Tafila Technical University, Tafila, Jordan
  • Department of Electrical and Computer Engineering, Applied Science Private University, Amman, Jordan
  • Department of Mechanical and Industrial Engineering, Applied Science Private University, Amman, Jordan
  • Department of Mechanical Engineering, Tafila Technical University, Tafila, Jordan
autor
  • Department of Mechanical Engineering, Tuskegee University, Tuskegee, USA
  • Environmental Engineering Faculty, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland
  • Renewable Energy Engineering Department, Faculty of Engineering, Middle East University, Amman, Jordan
autor
  • College of Engineering,University of Business and Technology, Jeddah, Saudi Arabia
  • Department of Thermal Science, Wrocław University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • 1. Alrbai M, Alahmer H, Alahmer A, Al-Rbaihat R, Aldalow A, Al-Dahidi S, et al. Retrofitting conventional chilled-water system to a solar-assisted absorption cooling system: Modeling, polynomial regression, and grasshopper optimization. J Energy Storage 2023; 65: 107276. https://doi.org/https:// doi.org/10.1016/j.est.2023.107276.
  • 2. Chandra YP, Matuska T. Stratification analysis of domestic hot water storage tanks: A comprehensive review. Energy Build 2019; 187: 110–131. https://doi. org/https://doi.org/10.1016/j.enbuild.2019.01.052.
  • 3. Alamayreh MI, Alahmer A. Design a solar harwester system capturing light and thermal energy coupled with a novel direct thermal energy storage and nanoparticles. Int J Thermofluids 2023; 18: 100328. https://doi.org/10.1016/j.ijft.2023.100328.
  • 4. Raluy RG, Dias AC. Domestic hot water systems: Environmental performance from a life cycle as sessment perspective. Sustain Prod Consum 2021; 26: 1011–1020. https://doi.org/https://doi. org/10.1016/j.spc.2021.01.005.
  • 5. Alahmer A, Alsaqoor S. Design of a dairy cooling thermal storage supported with secondary refrigeration cooling unit. IOSR J Mech Civ Eng 2014; 11: 30–6.
  • 6. Al-Rbaihat R, Sakhrieh A, Al-Asfar J, Alahmer A, Ayadi O, Al-Salaymeh A, et al. Performance assessment and theoretical simulation of adsorption refrigeration system driven by flat plate solar collector. Jordan J Mech Ind Eng 2017; 11.
  • 7. Gasque M, González-Altozano P, Maurer D, Moncho-Esteve IJ, Gutiérrez-Colomer RP, PalauSalvador G, et al. Study of the influence of inner lining material on thermal stratification in a hot water storage tank. Appl Therm Eng 2015; 75: 344–356. https://doi.org/https://doi.org/10.1016/j. applthermaleng.2014.10.040.
  • 8. Fernández-Seara J, Uhı´a FJ, Sieres J. Experimental analysis of a domestic electric hot water storage tank. Part II: dynamic mode of operation. Appl Therm Eng 2007; 27: 137–144. https://doi.org/https://doi. org/10.1016/j.applthermaleng.2006.05.004.
  • 9. Hepbasli A. Exergetic modeling and assessment of solar assisted domestic hot water tank integrated ground-source heat pump systems for residences. Energy Build 2007; 39: 1211–1217. https://doi.org/ https://doi.org/10.1016/j.enbuild.2007.01.007.
  • 10. Abdelhak O, Mhiri H, Bournot P. CFD analysis of thermal stratification in domestic hot water storage tank during dynamic mode. Build Simul 2015; 8:421– 9. https://doi.org/10.1007/s12273-015-0216-9.
  • 11. Yang L, Bøhm B, Paulsen O, Frederiksen S. Evaluation of the dynamic performance of a hot water tank with built-in heating coil. Int J Energy Res 1997; 21: 265–274. https://doi.org/https://doiorg/10.1002/(SICI)1099-114X(199703)21:3<265: AIDER252>3.0.CO;2-0.
  • 12. Ievers S, Lin W. Numerical simulation of three-dimensional flow dynamics in a hot water storage tank. Appl Energy 2009; 86: 2604–2614. https://doi.org/ https://doi.org/10.1016/j.apenergy.2009.04.010.
  • 13. Gao W, Liu T, Lin W, Luo C. Numerical study on mixing characteristics of hot water inside the storage tank of a solar system with different inlet velocities of the supply cold water. Procedia Environ Sci 2011; 11: 1153–1163. https://doi.org/https://doi. org/10.1016/j.proenv.2011.12.174.
  • 14. González-Altozano P, Gasque M, Ibáñez F, Gutiérrez-Colomer RP. New methodology for the characterisation of thermal performance in a hot water storage tank during charging. Appl Therm Eng 2015; 84: 196–205. https://doi.org/https://doi. org/10.1016/j.applthermaleng.2015.03.048.
  • 15. Fan J, Furbo S, Yue H. Development of a Hot Water Tank Simulation Program with Improved Prediction of Thermal Stratification in the Tank. Energy Procedia 2015; 70: 193–202. https://doi.org/https:// doi.org/10.1016/j.egypro.2015.02.115.
  • 16. Nkwetta DN, Vouillamoz P-E, Haghighat F, El-Mankibi M, Moreau A, Daoud A. Impact of phase change materials types and positioning on hot water tank thermal performance: Using measured water demand profile. Appl Therm Eng 2014; 67: 460–468. https://doi.org/ https://doi.org/10.1016/j.applthermaleng.2014.03.051.
  • 17. Padovan R, Manzan M. Genetic optimization of a PCM enhanced storage tank for Solar Domestic Hot Water Systems. Sol Energy 2014; 103: 563–573. https://doi. org/https://doi.org/10.1016/j.solener.2013.12.034.
  • 18. Fan J, Furbo S. Thermal stratification in a hot water tank established by heat loss from the tank. Sol Energy 2012; 86:3460–9. https://doi.org/https://doi. org/10.1016/j.solener.2012.07.026.
  • 19. Fan J, Furbo S. Buoyancy driven flow in a hot water tank due to standby heat loss. Sol Energy 2012; 86: 3438–3449. https://doi.org/https://doi. org/10.1016/j.solener.2012.07.024.
  • 20. Helwa NH, Mobarak AM, El-Sallak MS, El-Ghetany HH. Effect of hot-water consumption on temperaturę distribution in a horizontal solar water storage tank. Appl Energy 1995; 52: 185–197. https://doi.org/ https://doi.org/10.1016/0306-2619(95)00040-Y.
  • 21. Jannatabadi M, Taherian H. An experimental study of influence of hot water consumption rate on the thermal stratification inside a horizontal mantle storage tank. Heat Mass Transf 2012; 48: 1103–1112. https://doi.org/10.1007/s00231-011-0958-6.
  • 22. Reindl D, Kim SK, Kang YT, Hong H. Experimental verification of a solar hot water heating system with a spiral-jacketed storage tank. J Mech Sci Technol 2008; 22: 2228–2235. https://doi.org/10.1007/ s12206-008-0703-3.
  • 23. Kenjo L, Inard C, Caccavelli D. Experimental and numerical study of thermal stratification in a mantle tank of a solar domestic hot water system. Appl Therm Eng 2007; 27: 1986–1995. https://doi.org/https:// doi.org/10.1016/j.applthermaleng.2006.12.008.
  • 24. Dehghan AA, Barzegar A. Thermal performance behavior of a domestic hot water solar storage tank during consumption operation. Energy Convers Manag 2011; 52: 468–476. https://doi.org/https:// doi.org/10.1016/j.enconman.2010.06.075.
  • 25. Arslan M, Igci AA. Thermal performance of a vertical solar hot water storage tank with a mantle heat exchanger depending on the discharging operation parameters. Sol Energy 2015; 116: 184–204. https://doi.org/https:// doi.org/10.1016/j.solener.2015.03.045.
  • 26. Moncho-Esteve IJ, Gasque M, González-Altozano P, Palau-Salvador G. Simple inlet devices and their influence on thermal stratification in a hot water storage tank. Energy Build 2017; 150: 625–638. https://doi.org/ https://doi.org/10.1016/j.enbuild.2017.06.012.
  • 27. Beithou N. Modified electrically heated hot water storage tank: Experimental investigation. Trans Can Soc Mech Eng 2015; 39: 29–36.
  • 28. Issa M, Kodah Z. On the temperature field of a solar collector hot-water storage tank. Heat Recover Syst CHP 1988; 8: 571–575. https://doi.org/https://doi. org/10.1016/0890-4332(88)90016-6.
  • 29. Andrews JW. Hot water tank for use with a combination of solar energy and heat-pump desuperheating 1983.
  • 30. Li ZF, Sumathy K. Performance of chiller in a solar absorption air conditioning system with partitioned hot water storage tank. J Sol Energy Eng 2000; 123: 48–50. https://doi.org/10.1115/1.1345842.
  • 31. García-Marí E, Gasque M, Gutiérrez-Colomer RP, Ibáñez F, González-Altozano P. A new inlet device that enhances thermal stratification during charging in a hot water storage tank. Appl Therm Eng 2013; 61: 663–669. https://doi.org/https://doi. org/10.1016/j.applthermaleng.2013.08.023.
  • 32. Rhee J, Campbell A, Mariadass A, Morhous B. Temperature stratification from thermal diodes in solar hot water storage tank. Sol Energy 2010; 84: 507–511. https:// doi.org/https://doi.org/10.1016/j.solener.2009.12.007.
  • 33. Wang Z, Zhang H, Dou B, Huang H, Wu W, Wang Z. Experimental and numerical research of thermal stratification with a novel inlet in a dynamic hot water storage tank. Renew Energy 2017; 111: 353–571. https://doi.org/https://doi.org/10.1016/j. renene.2017.04.007.
  • 34. Zografos AI, Martin WA, Sunderland JE. Equations of properties as a function of temperaturę for seven fluids. Comput Methods Appl Mech Eng 1987; 61: 177–187. https://doi.org/https://doi. org/10.1016/0045-7825(87)90003-X.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9fd9dc7d-b02b-42f7-9b46-4786aff13bf4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.