PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flexible-elastic deformation measurement of ZnS:Cu2+ mechanoluminescent film using visual inspection and digital image correlation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
ZnS-based mechanoluminescent film has been widely used in the fields of stress visualization and stress sensing, due to its high brightness and repeatable stable luminescent characteristics. To evaluate the flexible-elastic deformation performance of ZnS-based mechanoluminescent film, both visual inspection and digital image correlation (DIC) are, respectively, employed for measuring the ZnS-based mechanoluminescent film. ZnS:Cu2+ mechanoluminescent powders are first mixed with polydimethylsiloxane (PDMS) matrix to produce ZnS:Cu2+-PDMS mechanoluminescent film. Then, two measurement experiments are, respectively, conducted to investigate the mechanical response and the flexible-elastic deformation performance of the prepared ZnS:Cu2+-PDMS mechanoluminescent film. On one hand, the mechanical response performance of the ZnS:Cu2+-PDMS mechanoluminescent film is validated by visual monitoring of composite concrete fracture processes. On the other hand, the prepared ZnS:Cu2+-PDMS mechanoluminescent film is also measured by DIC to obtain its full-field deformations and strains information. The flexible-elastic deformation performance of the ZnS:Cu2+-PDMS mechanoluminescent film is well demonstrated by the DIC measured results.
Rocznik
Strony
353--365
Opis fizyczny
Bibliogr. 25 poz., rys., wykr., wzory
Twórcy
autor
  • Yancheng Institute of Technology, School of Civil Engineering, Yancheng, 224051, China
  • Coastal City Low Carbon Construction Engineering Technology Research Center, Yancheng 224056, China
autor
  • Yancheng Institute of Technology, School of Civil Engineering, Yancheng, 224051, China
  • Coastal City Low Carbon Construction Engineering Technology Research Center, Yancheng 224056, China
autor
  • Jiangsu Fiber Composite Company Ltd., Jianhu, Yancheng 224700, China
autor
  • Yancheng Institute of Supervision & Inspection on Product Quality, Yancheng 224056, China
autor
  • Yancheng Institute of Technology, School of Civil Engineering, Yancheng, 224051, China
  • Jiangsu Water Source Company Ltd. of the Eastern Route of the South-to-North Water Diversion Project, Nanjing 210000, China
Bibliografia
  • [1] Nsengiyumva, W., Zhong, S. C., Lin, J. W., Zhang, Q. K., Zhong, J. F., & Huang, Y. X. (2021). Advances, limitations and prospects of nondestructive testing and evaluation of thick composites and sandwich structures: A state-of-art review. Composite Structures, 256, 112951. https://doi.org/10.1016/j.compstruct.2020.112951
  • [2] Sun, H., Wang, T., Lin, D. W., Wang, Y. S., & Qing, X. L. (2020). An eddy current-based structural health monitoring technique for tracking bolt cracking. Sensors, 20, 6843. https://doi.org/10.3390/s20236843
  • [3] Lyu, L., Ohnuma, Y., Shigemoto, Y., Hanada, T., Fukada, T., Akiyama, H., Tersaki, N., & Horiuchi, S. (2020). Toughness and durability of interfaces in dissimilar adhesive joints of aluminum and carbon-fiber-reinforced thermoplastics. Langmuir, 36(46), 14046-14057. https://doi.org/10.1021/acs.langmuir.0c02628
  • [4] Jha, P., & Khare, A. (2020). SrAl2O4:Eu, Dy mechanoluminescent flexible film for impact sensors. Journal of Alloys and Compounds, 847, 156428. https://doi.org/10.1016/j.jallcom.2020.156428
  • [5] Zhou, J. Y., Gu, Y., Lu, J. Y., Xu, L. D., Zhang, J. C., Wang, D, & Wang, W. X. (2020). An ultra-strong non-pre-irradiation and self-recoverable mechanoluminescent elastomer. Chemical Engineering Journal, 390, 124473. https://doi.org/10.1016/j.cej.2020.124473
  • [6] Makris, B., Hille, F., Thiele, M., Kirschberger, D., & Sowietzki, D. (2018). Crack luminescence as an innovative method for detection of fatigue damage. Journal of Sensors and Sensor Systems, 7, 259-266. https://doi.org/10.5194/jsss-7-259-2018
  • [7] Timilsina, S., Bashnet, R., Kim, S. H., Lee, K. H., & Kim, J. S. (2017). A life-time reproducible mechano-luminescent paint for the visualization of crack propagation mechanisms in concrete structures. International Journal of Fatigue, 101, 75-79. https://doi.org/10.1016/j.ijfatigue.2017.03.011
  • [8] Yuan, Y., Yuan, W., Chen, Y. L. (2016). Recent advances in mechanoluminescent polymers. Science China Materials, 59(6), 507-520. https://doi.org/10.1007/s40843-016-5060-7
  • [9] Xu, C. N., Watanabe, T., Akiyama, M., & Zheng, X. G. (1999). Direct view of stress distribution in solid by mechanoluminescence. Applied Physics Letters, 74(17), 2414-2416. https://doi.org/10.1063/1.123865
  • [10] Jha, P., & Chandra, B. P. (2014). Survey of the literature on mechanoluminescence from 1605 to 2013. Luminescence, 29(8), 977-993. https://doi.org/10.1002/bio.2647
  • [11] Chandra, B. P., Chandra, V. K., & Jha, P. (2015). Mechanoluminescence of coloured alkali halide crystals. Defect Diff. Forum, 361, 121-176. https://doi.org/10.4028/www.scientific.net/DDF.361.121
  • [12] Chandra, B. P., Chandra, V. K., & Jha, P. (2015). Elastico-mechanoluminescence and crystal-structure relationships in persistent luminescent materials and II-VI semiconductor phosphors. Physica B: Condensed Matter, 463, 62-67. https://doi.org/10.1016/j.physb.2015.01.030
  • [13] Shin, S. W., Oh, J. P., Hong, C. W., Kim, E. M., Woo, J. J., Heo, G. S., & Kim, J. H. (2016). Origin of mechanoluminescence from Cu-doped ZnS particles embedded in an elastomer film and its application in flexible electro-mechanoluminescent lighting devices. ACS Applied Materials & Interfaces, 8(2), 1098-1103. https://doi.org/10.1021/acsami.5b07594
  • [14] Zhuang, Y. X., & Xie, R. J. (2021). Mechanoluminescence of rebrightening the prospects of stress sensing: a review. Advanced Materials, 33, 2005925. https://doi.org/10.1002/adma.202005925
  • [15] Fontenot, R. S., Allison, S. W., Lynch, K. J., Hollerman, W. A., & Sabri, F. (2016). Mechanical, spectral, and luminescence properties of ZnS:Mn doped PDMS. Journal of Luminescence, 170, 194-199. https://doi.org/10.1016/j.jlumin.2015.10.047
  • [16] Krishnan, S., Van der Walt, H., Venkatesh, V., Sundaresan, V. B. (2017). Dynamic characterization of elastico-mechanoluminescence towards structural health monitoring. Journal of Intelligent Material Systems and Structures, 28(17), 1-7. https://doi.org/10.1177/1045389X17689939
  • [17] Zhu, J. G., Chen, C. F., Zhang, R. F. (2021). Electroprinting of MWCNT-assisted PVDF thin films with enhanced electrical properties. Applied Surface Science Advances, 5, 100115. https://doi.org/10.1016/j.apsadv.2021.100115
  • [18] Zhang, G. D., Zhao, Y. L., Sun, J., Wei, X. Y. (2022). Optical response and application of mechano-luminescent film of ZnS:Cu under impact pressure. Chinese Journal of High Pressure Physics, 36(2), 021301. https://doi.org/10.11858/gywlxb.20210899 (in Chinese)
  • [19] Wang, F. L., Wang, F. L., Wang, X. D., Weng, S. C., Jiang, J. F., Liu, Q. L., Hao, X. T., Han, L., Wang, J. J., Pan, C. F., Liu, H., & Sang, Y. H. (2019). Mechanoluminescence enhancement of ZnS:Cu, Mn with piezotronic effect induced trap-depth reduction originated from PVDF ferroelectric film. Nano Energy, 63, 103861. https://doi.org/10.1016/j.nanoen.2019.103861
  • [20] Han, Y., Bai, Y. Q., Bian, J. L., Guo, X. P., Liu, B., & Wang, Z. F. (2021). Polydimethylsiloxane-based mechanoluminescent occlusal splint with the visualization of occlusal force. ACS Applied Polymer Materials, 3(10), 5180-5187. https://doi.org/10.1021/acsapm.1c00917
  • [21] Pan, B. (2018). Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals. Measurement Science and Technology, 29, 081001. https://doi.org/10.1088/1361-6501/aac55b
  • [22] Gao, H. L., Lin, Z. Y., Huang, X. W., Shang, H. B., & Zhan, J. S. (2022). In situ measurement of cyclic plastic zone and internal strain response of Q & P steel near fatigue crack tip region based on micro-DIC. Materials, 15(17), 6114. https://doi.org/10.3390/ma15176114
  • [23] Gu, G., Xu, G. Z., & Xu, B. (2018). Synchronous measurement of out-of-plane displacement and slopes by triple-optical-path digital speckle pattern interferometry. Metrology and Measurement Systems, 25(1), 3-14. https://doi.org/10.24425/118159
  • [24] Qi, J. K., Xu, M. Q., Zhang, W. L., Liu, Y. B., & Dai, X. J. (2022). Defect detection of pipeline inner surface based on coaxial digital image correlation with hypercentric lens. Materials, 15(21), 7543. https://doi.org/10.3390/ma15217543
  • [25] Blaber, J., Adair, B., & Antoniou, A. (2015). Ncorr: Open-Source 2D Digital Image Correlation Matlab Software. Experimental Mechanics, 55, 1105-1122. https://doi.org/10.1007/s11340-015-0009-1
Uwagi
1. This work was supported by the National Natural Science Foundation of China (No. 52078449), by the Jiangsu Provincial Market Regulation Administration Science and Technology Project (No. KJ2022049), by Jiangsu Province Industry-University-Research Collaboration Project (No. BY20221072), by the Funding Program for Excellent Postdoctoral Talents (No. 314020), and by the Jiangsu South to North Water Diversion Technology R&D Project (No. JSNSBD202205).
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9fd8b188-7713-48b7-bfaa-138fe0c0476f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.