PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Squeeze flow modeling with the use of micropolar fluid theory

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to study the applicability of micropolar fluid theory to modeling and to calculating tribological squeeze flow characteristics depending on the geometrical dimension of the flow field. Based on analytical solutions in the lubrication regime of squeeze flow between parallel plates, calculations of the load capacity and time required to squeeze the film are performed and compared – as a function of the distance between the plates – for both fluid models: the micropolar model and the Newtonian model. In particular, maximum distance between the plates for which the micropolar effects of the fluid become significant will be established. Values of rheological constants of the fluids, both those experimentally determined and predicted by means of using equilibrium molecular dynamics, have been used in the calculations. The same analysis was performed as a function of dimensionless microstructural parameters.
Rocznik
Strony
927--933
Opis fizyczny
Bibliogr. 28 poz., rys., wykr., tab.
Twórcy
  • Department of Fluid Mechanics, Rzeszów University of Technology, 8 Powstańców Warszawy St., 35-959 Rzeszów, Poland
Bibliografia
  • [1] D.F. Hays, “Squeeze films for rectangular plates”, J. Fluids Eng. 85 (2), 243‒246 (1963).
  • [2] B.J. Hamrock, Fundamental of Fluid Film Lubrication, New York, McGraw-Hill, 1994.
  • [3] J. Prakash, P. Sinha, “Cyclic squeeze films in micropolar fluid lubricated journal bearing”, ASME J Tribol. 98 (3), 412‒417 (1976).
  • [4] J. Prakash, P. Sinha, “Squeeze film theory for micropolar fluids”, ASME J. Lubr. Technol. 98 (1), 139‒144 (1976).
  • [5] O.A. Bég, M.M. Rashidi, T.A. Bég, M. Asadi, “Homotopy analysis of transient magneto-bio-fluid dynamics of micropolar squeeze film in a porous medium: a model for magneto-biorheological lubrication”, Journal of Mechanics in Medicine and Biology 12 (3), 1‒21 (2012).
  • [6] M.E. Shimpi, G.M. Deheri, “Magnetic fluidbased squeeze film performance in rotating curved porous circular plates: the effect of deformation and surface roughness”, Tribology in Industry 34 (2), 57‒67 (2012).
  • [7] X. Wang, K.Q. Zhu, “Numerical analysis of journal bearings lubricated with micropolar fluids including thermal and cavitating effects”, Tribol Int 39 (3), 227‒237 (2006).
  • [8] A. Siddangouda, “Squeezing film characteristics for micropolar fluid between porous parellel stepped plates”, Tribology in Industry 37 (1), 97‒106 (2015).
  • [9] A.C. Eringen, “Theory of micropolar fluids”, J. Math. Mech. 16, 1‒16 (1966).
  • [10] S. Ram, “Numerical analysis of capillary compensated micropolar fluid lubricated hole-entry journal bearings”, Jurnal Tribologi 9, 18‒44 (2016).
  • [11] N. Ram and S.C. Sharma, “Influence of micropolar lubricants on asymmetric slot-entry journal bearing”, Tribology Online 10(5), 320‒328 (2015).
  • [12] N. Ram, S.C. Sharma, and A. Rajput, “Compensated hole-entry hybrid journal bearing by CFV restrictor under micropolar lubricants”, Proceedings of Malaysian International Tribology Conference, 171‒172 (2015).
  • [13] D.C. Rapaport, “Shear-induced order and rotation in pipe flow of short-chain molecules”, Europhysics Letters 26 (6), 401‒406 (1994).
  • [14] J. Delhommelle, D.J. Evans, “Poiseille flow of micropolar fluid”, Molecular Physics, 100 (17), 2857‒65 (2002).
  • [15] A. Kucaba-Pietal, Microflows Modelling by Use Micropolar Fluid Theory, OW PRz, Rzeszów, 2004 (in Polish).
  • [16] A. Kucaba-Pietal, “Microchannels flow modelling with the micropolar fluid theory”, Bull. Pol. Ac: Tech. 52 (3), 209‒214 (2004).
  • [17] A. Kucaba-Pietal, Z. Peradzyński, Z. Walenta, “MD Computer simulation of water flows in nanochannels”, Bull. Pol. Ac: Tech. 57(1), 1‒7 (2009).
  • [18] J.S. Hansen, H. Bruus, B.D. Todd, P. Daivis, “Rotational and spin viscosities of water: Application to nanofluidics”, Phys. Review E 84, 036311 (2011).
  • [19] G. Łukaszewicz, Micropolar Fluids. Theory and Appli- cation, Birkhouser, Berlin, 1999.
  • [20] J. Badur, P.J. Ziółkowski, P. Ziółkowski, “On the angular velocity slip in nano‑flows”, Microfluid Nanofluid 19, 191–198 (2015). doi 10.1007/s10404‒015‒1564‒6
  • [21] M. Ghanabi, S. Hossainpour, G. Rezazadeh, “Study of squeeze film damping in a micro-beam resonator based on micro-polar theory” (2015). http://dx.doi.org/10.1590/1679‒78251364
  • [22] K.A. Kline, S.J. Allen, “Nonsteady flows of fluids with microstructure”, Physics of Fluids 13, 263‒283 (1970).
  • [23] A.J. Willson, “Basic flows of micropolar liquid”, Appl. Sci. Res. 20, 338‒335 (1969).
  • [24] A. Kucaba-Pietal, N.P. Migoun, “Effects of non-zero values of microrotation vector on the walls on squeeze film behaviour of micropolar fluid”, Intern. J. Nonl. Sci. and Num. Sim. 2 (2), 115‒127 (2001).
  • [25] P. Prokhorenko, N.P. Migoun, M. Stadthaus, Theoretical Principles of Liquid Penetrant Testing, DVS Verlag, Berlin, 1999.
  • [26] V.S. Kolpashchikov, N.P. Migoun, P. Prokhorenko, “Experimental determination of material micropolar fluid constants”, Int. J. Engng. Sci. 21 (4), 405 (1983).
  • [27] A. Kucaba-Pietal, “Nanoflows modelling”, in Nanomechanics. Selected Problems, (eds. A. Muc, M. Chwał, A. Garstecki, G. Szefer), Wydawnictwo PK, Kraków, 51‒62 (2014).
  • [28] A.P. Markensteijn, R. Hartkamp, S. Lunding, J. Westerweel, “A comparison of the value of viscosity for several water models using Poiseuillea flow in a nano-channel”. J. Chem. Phys. 136, 134104 (2012). doi 10.1063/1.3697977
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9fd61dd5-8f0f-4785-bb83-4435084c0278
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.