Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper the Laplace transformation for solving the problem of fractional heat conduction in a two-layered slab has been applied. The different orders of Caputo derivative in the time-fractional equation governed the heat transfer in the layers are assumed. The inverse Laplace transform by using a numerical method is determined. The numerical results obtained by using of the eigenfunctions method and by numerically inverting the Laplace transform are compared.
Słowa kluczowe
Rocznik
Tom
Strony
105--113
Opis fizyczny
Bibliogr. 12 poz., rys., tab.
Twórcy
autor
- Institute of Mathematics, Czestochowa University of Technology Częstochowa, Poland
autor
- Institute of Mathematics, Czestochowa University of Technology Częstochowa, Poland
Bibliografia
- [1] Haji-Sheikh A., Beck J. V., Temperature solution in multi-dimensional multi-layer bodies, International Journal of Heat and Mass Transfer 2002, 45, 1865-1877.
- [2] Özişik M. N., Heat Conduction, Wiley, New York 1993.
- [3] Povstenko Y., Linear Fractional Diffusion-wave Equation for Scientists and Engineers, Birkhauser, New York 2015
- [4] Povstenko Y., Fractional heat conduction in a semi-infinite composite body, Communications in Applied and Industrial Mathematics 2014, 6, 1, e-482.
- [5] Povstenko Y., Fundamental solutions to time-fractional heat conduction equations in two joint half-lines, Central European Journal of Physics 2013, 11, 1284-1294.
- [6] Povstenko Y., Fractional heat conduction in an infinite medium with a spherical inclusion, Entropy 2013, 15, 4122-4133.
- [7] Povstenko Y., Fractional heat conduction in infinite one-dimensional composite medium. Journal of Thermal Stresses 2013, 36, 351-363.
- [8] Siedlecka U., Kukla S., A solution to the problem of time-fractional heat conduction in a multilayer slab, Journal of Applied Mathematics and Computational Mechanics 2015, 14(3), 95-102.
- [9] Podlubny I., Fractional Differential Equations, Academic Press, San Diego 1999.
- [10] Valko P.P., Abate J., Numerical inversion of 2-D Laplace transforms applied to fractional diffusion equations, Applied Numerical Mathematics 2005, 53, 73-88.
- [11] Wang Q., Zhan H., On different numerical inverse Laplace methods for solute transport problems, Advances in Water Resources 2015, 75, 80-92.
- [12] Povstenko Y., Klekot J., The Dirichlet problem for time-fractional advection-diffusion equation in a half-space, Journal of Applied Mathematics and Computational Mechanics 2015, 14(2), 73-83.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9fd1f958-ddc5-456f-92fb-ad3428d4b796