PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Carbon, oxygen and strontium isotope composition of Plattenkalk from the Upper Jurassic Wattendorf Konservat-Lagerstätte (Franconian Alb, Germany)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The oldest Jurassic (Kimmeridgian) Plattenkalk occurs in Wattendorf on the northern Franconian Alb (southern Germany). It is a 15 m thick alternation of laminated dolomite and limestone, interbedded with carbonate debris layers in a depression ~2 km across and a few tens of metres deeper than the surrounding microbial-sponge reefs. The Plattenkalk overlies a few tens of metres of microbialsponge biostrome facies and bedded, micritic basinal limestone. The bulk-rock stable isotopes of the micritic basinal facies gradually change from normal marine (δ13C ~ +2‰, δ18O ~ –2‰ VPDB) to lower values (δ13C ~ 0‰, δ18O ~ –6‰) in a ~ 40 m thick interval including Plattenkalk and suggest ageing of the bottom waters. The surrounding reefs are isotopically nearly invariant (δ13C ~ +2‰, δ18O ~ –2‰ VPDB). An isotope anomaly (δ13C of > ~ –9‰) is restricted to the basinal facies and is most pronounced in the biostrome facies. This indicates methanogenesis, which is documented in negative δ13C in dedolomite, calcite-cemented dolomite and calcite concretions and occurred probably mainly below seabed. The Konservat-Lagerstätte was probably deposited near an oxygen minimum zone in a water column with low productivity of organic material. Dolomite is in isotopic equilibrium with Plattenkalk and was probably deposited as protodolomite from chemically modified, aged seawater. 87Sr/86Sr ratios of bulk carbonate are often slightly radiogenic, probably due to random analytical sample contamination by clay minerals. Belemnite and some matrix 87Sr/86Sr is slightly lower than that of Kimmeridgian seawater, either caused by basin restriction or by fluids derived from the diagenesis of Oxfordian rocks below. An equivalent Upper Kimmeridgian depression ~23 km distant and a somewhat younger Konservat-Lagerstätte in Poland show a δ13C isotope anomaly below the main fossil beds. Isotopic evidence for saline bottom waters, the current interpretation, is lacking. This study also shows that micritic carbonates can preserve their early diagenetic, marine δ18O signal, which is correlatable over tens of kilometres
Czasopismo
Rocznik
Strony
1--20
Opis fizyczny
Bibliogr. 64 poz.
Twórcy
  • Technische Universität Clausthal, Institut für Geologie und Paläontologie, Leibnizstr. 10, D-38678 Clausthal-Zellerfeld, Germany
  • Naturkunde-Museum Bamberg, Fleischstraße 2, D-96047 Bamberg, Germany
Bibliografia
  • ARRATIA G., SCHULTZE H.-P., TISCHLINGER H., VIOHL G. (eds.), 2015 – Solnhofen – ein Fenster in die Jurazeit. Verlag Dr. Friedrich Pfeil, München.
  • BARTHEL K.W., 1969 – Die obertithonische, regressive Flachwasser-Phase der Neuburger Folge in Bayern. Abhandlungen der Königlich Bayerischen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse, Neue Folge, 142: 1–174.
  • BAUSCH W., HOEFS J., 1972 – Die Isotopenzusammensetzung von Dolomiten und Kalken aus dem siiddeutschen Malm. Contributions to Mineralogy and Petrology, 37: 121–130.
  • BRIGAUD B., PUCÉAT E., PELLENARD P., VINCENT B., JOACHIMSKI M.M., 2008 – Climatic fluctuations and seasonality during the Late Jurassic (Oxfordian–Early Kimmeridgian) inferred from δ18O of Paris Basin oyster shells. Earth and Planetary Science Letters, 273: 58–67.
  • COLOMBIÉ C., LÉCUYER C., STRASSER A., 2011 – Carbon and oxygen-isotope records of palaeoenvironmental and carbonate production changes in shallow-marine carbonates (Kimmeridgian, Swiss Jura). Geological Magazine, 148: 133–153.
  • FESEFELDT K., 1962 – Schichtenfolge und Lagerung des oberen Weißjura zwischen Solnhofen und der Donau (Südliche Frankenalb). Erlanger Geologische Abhandlungen, 46: 1–80.
  • FÜRSICH F., MÄUSER M., SCHNEIDER S., WERNER W., 2007a – The Wattendorf Plattenkalk (Upper Kimmeridgian) – a new conservation lagerstätte from the northern Franconian Alb, southern Germany. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 245: 45–58.
  • FÜRSICH F., WERNER W., SCHNEIDER S., MÄUSER M., 2007b – Sedimentology, taphonomy and paleogeography of a laminated plattenkalk of the northern Franconian alb (southern Germany). Palaeogeography, Palaeoclimatology, Palaeoecology, 243: 92–117.
  • HÄTTIG K., STEVENS K., SCHWEIGERT G., MUTTERLOSE J., 2019 – Evaluation of shark tooth diagenesis – screening methods and the application of their stable oxygen isotope data for palaeoenvironmental reconstructions. Journal of the Geological Society, 176: 482–491.
  • HEGENBERGER W., SCHIRMER W., 1967 – Geologische Karte von Bayern 1 : 25,000 und Erläuterungen zu Blatt Nr. 5932 Üt¬zing. München.
  • HERRMANN A.D., GORDON G.W., ANBAR A.D., 2018 – Uranium isotope variations in a dolomitized Jurassic carbonate platform (Tithonian; Franconian Alb, Southern Germany. Chemical Geology, 497: 41–53.
  • HOMUTH S., 2014 – Aufschlussanalogstudie zur Charakterisierung oberjurassischer geothermischer Karbonatreservoire im Molassebecken [Unpubl. PhD thesis]. Technische Universität Darmstadt.
  • JIMENEZ-LOPEZ C., ROMANEK C.S., HUERTAS F.J., OHMOTO H., CABALLERO E., 2004 – Oxygen isotope fractionation in synthetic magnesian calcite. Geochimica et Cosmochimica Acta, 68: 3367–3377.
  • JIMENEZ-LOPEZ C., ROMAEK C.S., CABALLERO E., 2006 – Carbon isotope fractionation in synthetic magnesian calcite. Geochimica et Cosmochimica Acta, 70: 1163–1171.
  • KACZMAREK S.E., SIBLEY D.F., 2011 – On the evolution of dolomite stoichiometry and cation order during high-temperature synthesis experiments: An alternative model for the geochemical evolution of natural dolomites. Sedimentary Geology, 240: 30–40.
  • KEUPP H., 1976 – Der Solnhofener Plattenkalk – Ein neues Modell seiner Entstehung. Naturkundliche Gesellschaft Nürnberg, 1976: 19–36.
  • KOCH R., SCHORR M., 1986 – Diagenesis of Upper Jurassic sponge-algal reefs in SW Germany. In: Reef diagenesis (eds. J.H. Schroeder, B. Purser): 224–244. Springer, Berlin.
  • KORTE C., KOZUR H., BRUCKSCHEN P., VEIZER J., 2003 – Strontium isotope evolution of Late Permian and Triassic seawater. Geochmica et Cosmochimica Acta, 67: 47–62.
  • KREIENSIEK A., 2019 – Untersuchung von Reifegraden von Gesteinen des Fränkischen Jura [Unpubl. BSc Thesis]. Technical University Clausthal.
  • KUZNETSOV A.B., SEMIKHATOV M.A., GOROKOV I.M., 2012 – The Sr isotope composition of the world ocean, marginal and inland seas: Implications for the Sr isotope stratigraphy. Stratigraphy and Geological Correlation, 20: 501–515.
  • LAND L.S., 1980 – The isotopic and trace element geochemistry of dolomite: the state of the art. Society for Sedimentary Geology, Special Publications, 28: 86–110.
  • LEUZINGER L., KOCSIS L., BILLON-BRUYAT J.-P., SPEZZAFERRI, S., VENNEMANN T., 2015 – Stable isotope study of a new chondrichthyan fauna (Kimmeridgian, Porrentruy, Swiss Jura): an unusual freshwater-influenced isotopic composition for the hybodont shark Asteracanthus. Biogeosciences, 12: 6945–6954.
  • LIEDMANN W., 1992 – Diagenetische Entwicklung Süddeutscher Malmkarbonate – unter Berücksichtigung lumineszenzpetrographischer, fluid inclusions und geochemischer Untersuchungsmethoden [Unpubl. PhD thesis]. Universität Heidel¬berg.
  • LOHMANN K.C., 1987 – Geochemical patterns of meteoric diagenetic systems and their application to the study of paleokarst. In: Paleokarst (eds. N.P. James, P.W. Choquette): 58–80. Springer, Berlin.
  • MÄUSER M., 2015 – Die laminierten Plattenkalke von Wattendorf in Oberfranken. In: Solnhofen – ein Fenster in die Jurazeit (eds. G. Arratia et al.): 515–535. Verlag Dr. Friedrich Pfeil, München.
  • MÄUSER M., SCHIRMER W., SCHMIDT-KALER H., 2002 – Obermainalb und fränkisches Bruchscholleland. Verlag Dr. Friedrich Pfeil, München.
  • McARTHUR J., 1994 – Recent trends in strontium isotope stratigraphy. Terra Nova, 6, 331–358.
  • MEISTER P.H., 2013 – Two opposing effects of sulfate reduction on carbonate precipitation in normal marine, hypersaline, and alkaline environments. Geology, 42: 499–502.
  • MEYER R.K.F., 1974 – Stratigraphie und Fazies des Frankendolomits (Malm). 2. Teil: Mittlere Frankenalb. Erlanger Geologische Abhandlungen, 96: 1–34.
  • MEYER R.K.F., 1979 – Geologische Karte von Bayern 1 : 25,000 Erläuterungen zum Blatt Nr. 6132 Buttenheim. Bayerisches Geologisches Landesamt, München.
  • MEYER R.K.F., 2015 – Lithostratigraphie der Solhofener Schichten (Weißjura Zeta 2a+2b, Unter-tithonium). In: Solnhofen – ein Fenster in die Jurazeit (eds. G. Arratia et al.): 67-71. Verlag Dr. Friedrich Pfeil, München.
  • MEYER R.K.F., SCHMIDT-KALER H., 1992 – Wanderungen in die Erdgeschichte – Durch die Fränkische Schweiz. Verlag. Dr. Friedrich Pfeil.
  • MEYER R.K.F., SCHMIDT-KALER H., 1989 – Paläogeographischer Atlas des süddeutschen Malm. Geologisches Jahrbuch, 115: 1–77.
  • MRAZ E., WOLFGRAMM M., MÖCK I., THURO K., 2019 – Detailed fluid inclusion and stable isotope analysis on deep carbonates from the North Alpine Foreland Basin to constrain paleofluid evolution. Geofluids, 2019, Article ID 8980794.
  • MUDROCH A., 2001 – Fischzähne aus dem Oberjura Nordwest¬europas – Systematik, Biogeochemie und Palökologie [Unpubl. PhD thesis]. University of Hannover, Germany.
  • MUNNECKE A., WESTPHAL H., KÖLBL-EBERT M., 2008 – Diagenesis of plattenkalk: examples from the Solnhofen area (Upper Jurassic, southern Germany). Sedimentology, 55, 1931–1946.
  • NIEBUHR B., PÜRNER T., 2014 – Plattenkalk und Frankendolo¬mit – Lithostratigraphie der Weißjura-Gruppe der Frankenalb (außeralpiner Oberjura, Bayern). Schriftenreihe der Deutschen Geologischen Gesellschaft, 83, 5–71.
  • OOST A.P., de BOER P.L., 1994 – Tectonic and climatic setting of lithographic limestone basins. Geobios, 16: 321–330.
  • PATTERSON W.P., WALTER L.M., 1994 – Syndepositional diagenesis of modern platform carbonates: evidence from isotopic and minor element data. Geology, 22: 127–130.
  • PIERRE C., VERGNAUT-GRAZZINI C., FAUGERES J.C., 1991 – Oxygen and carbon stable isotope tracers of the water masses in the Central Brazil Basin. Deep Sea Research Part A, 38: 597–606.
  • PRICE G.D., FÕZY I., PÁLFY J., 2016 – Carbon cycle history through the Jurassic-Cretaceous boundary: a new global δ13C stack. Palaeogeography, Palaeoclimatology, Palaeoecology, 451: 46–61.
  • PURSER B.H., TUCKER M.E., ZENGER D.H., 1994 – Problems, progress and future research concerning dolomites and dolomitization. IAS Special Publications, 21: 3–20.
  • QUENSTEDT F.A., 1856–1858 – Der Jura. H. Laupp’sche Buchhandlung.
  • REICHART G.L., LOURENS L.J., ZACHARIASSE W.J., 1998 – Temporal variability in the northern Arabian Sea oxygen minimum zone (OMZ) during the last 225,000 years. Paleoceanography, 13, 607–621.
  • REINHOLD C., 1998 – Multiple episodes of dolomitization and dolomite recrystallization during shallow burial in Upper Ju¬rassic shelf carbonates: eastern Swabian Alb, southern Germany. Sedimentary Geology, 121: 71–95.
  • RUF M., LINK E., PROSS J., AIGNER T., 2003 – Integrated sequence stratigraphy: Facies, stable isotope and palynofacies analysis in a deeper epicontinental carbonate ramp (Late Jurassic, SW Germany). Sedimentary Geology, 175: 391–414.
  • SALLER A., 2006 – Geochemistry of meteoric calcite cements in some Pleistocene limestones. Sedimentology, 38: 601–621.
  • SCHARFENBERG L., 2011 – Mikrofaziesanalyse und Genese eines oberjurassischen Plattenkalkvorkommens von Wattendorf (Oberfranken) [Unpubl. Diploma Thesis]. University Erlangen.
  • SCHOENHERR J., REUNING L., HALLENBERGER M., LÜDERS V., LEMMENS L., BIEHL B.C., LEWIN A., LEUPOLD M., WIMMERS K., STROHMENGER C.J., 2018 – Dedolomitization: review and case study of uncommon mesogenetic formation conditions. Earth-Science Reviews, 185: 780–805.
  • SCHWEIGERT G., 2015 – Biostratigraphie der Plattenkalke der südlichen Frankenalb. In: Solnhofen – ein Fenster in die Jurazeit (eds. G. Arratia et al.): 63–66. Verlag Dr. Friedrich Pfeil, München.
  • SEILACHER A., REIF W.E., WESTPHAL F., 1985 – Sedimentological, ecological and temporal patterns of fossil Lagerstätten. Philosophical Transactions of the Royal Society of London, B, 311: 5–23.
  • SHACKLETON N.J., KENNETT J.P., 1975 – Paleotemperature history of the Cenozoic and initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP sites 277, 279 and 281. Initial Reports of the Deep Sea Drilling Projects, 29: 743–756.
  • SIMO J.A., JOHNSON C.M., VANDREY M.R., BROWN, P.E., CASTROGIOVANNI E., DRZEWIECKI P.E., VALLEY J.W., BOYER J., 1994 – Burial dolomitization of the Middle Ordovician Glenwood Formation by evaporitic brines, Michigan Basin. Special Publications of the International Association of Sedimentologists, 21: 133–153.
  • STEVENS K., MUTTERLOSE J., SCHWEIGERT G., 2014 – Belemnite ecology and the environment of the Nusplingen Plattenkalk (Late Jurassic, southern Germany): evidence from stable isotope data. Lethaia, 47: 512–523.
  • VASCONCELOS C., MCKENZIE J.A., 1997 – Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). Journal of Sedimentary Research, 67: 78–390.
  • VASCONCELOS C., McKENZIE J.A., BERNASCONI S., GRUJIC D., TIENS A.J., 1995 – Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature, 377: 20–22.
  • VIOHL G., 2015a – Der geologische Rahmen: die südliche Frankenalb und ihre Entwicklung. In: Solnhofen – ein Fenster in die Jurazeit (eds. G. Arratia et al.): 56–62. Verlag Dr. Friedrich Pfeil, München.
  • VIOHL G., 2015b – Die Plattenkalk-Typen der südlichen Frankenalb. In: Solnhofen – ein Fenster in die Jurazeit (eds. G. Arratia et al.): 72–77. Verlag Dr. Friedrich Pfeil, München.
  • VIOHL G., 2015c – Die lithographischen Plattenkalke im engeren Sinne. In: Solnhofen – ein Fenster in die Jurazeit (eds. G. Arratia et al.): 78–100. Verlag Dr. Friedrich Pfeil, München.
  • WIERZBOWSKI H., 2019 – Palaeoenvironmental changes recorded in the oxygen and carbon isotope composition of Kimmeridgian (Upper Jurassic) carbonates from central Poland. Geological Quarterly, 63: 359–374.
  • WIERZBOWSKI H., DUBICKA Z., RYCHLIŃSKI T., DURSKA E., OLEMPSKA E., BŁAŻEJOWSKI B., 2016 – Depositional environment of the Owadów–Brzezinki conservation Lagerstätte (uppermost Jurassic, central Poland): evidence from microfacies analysis, microfossils and geochemical proxies. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 282: 81–108.
  • WIERZBOWSKI H., ANCZKIEWICZ R., PAWLAK J., ROGOV M.A., KUZNETSOV A.B., 2017 – Revised Middle-Upper Jurassic strontium isotope stratigraphy. Chemical Geology, 466: 239–255.
  • ZHENG Y.-F., 1999 – Oxygen isotope fractionation in carbonate and sulfate minerals. Geochemical Journal, 33: 109–126.
  • ZUO F., HEIMHOFER U., HUCK S., ADATTE T., EHRBACHER J., BODIN S., 2019 – Climatic fluctuations and seasonality during the Kimmeridgian (Late Jurassic): Stable isotope and clay mineralogical data from the Lower Saxony Basin, Northern Germany. Palaeogeography, Palaeoclimatology, Palaeoecology, 517: 1–15.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9fd103b7-93cd-4169-8be2-4bc6676a7d4e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.