PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The positivity of the fractional order model of a two-dimensional temperature field

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents analysis of the positivity for a two-dimensional temperature field. The process under consideration is described by the linear, infinite-dimensional, noninteger order state equation. It is derived from a two-dimensional parabolic equation with homogenous Neumann boundary conditions along all borders and homogenous initial condition. The form of control and observation operators is determined by the construction of a real system. The internal and external positivity of the model are associated to the localization of heater and measurement. It has been proven that the internal positivity of the considered system can be achieved by the proper selection of attachment of a heater and place of a measurement as well as the dimension of the finite-dimensional approximation of the considered model. Conditions of the internal positivity associated with construction of real experimental system are proposed. The postivity is analysed separately for control and output of the system. This allows one to analyse the positivity of thermal systems without explicit control. Theoretical considerations are numerically verified with the use of experimental data. The proposed results can be applied i.e. to point suitable places for measuring of a temperature using a thermal imaging camera.
Rocznik
Strony
art. no. e145675
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] L. Farina and S. Rinaldi, Positive Linear Systems: Theory and Applications. New York, Chichester, Weinheim, Brisbane, Singapore, Toronto: John Wiley and sons, 2011.
  • [2] T. Kaczorek, Positive 1D and 2D Systems. New York: Springer, 2002.
  • [3] T. Kaczorek and K. Rogowski, Fractional Linear Systems and Electrical Circuits. Bialystok: Bialystok University of Technology, 2014.
  • [4] U. Krause, Positive Dynamical Systems in Discrete Time. Theory, Models, and Applications. De Gruyter, 2015.
  • [5] D. Luenberger, Introduction to Dynamic Systems. Theory, Models and Applications. USA: J. Wiley and Sons, 1979.
  • [6] A. Ratzer and M. Valcher, “A tutorial on positive systems and large scale control,” in 2018 IEEE Conference on Decision and Control (CDC), Miami Beach, FL, USA, 17-19 Dec. 2018, 2018.
  • [7] A. Benzaouia, F. Mesquine, M. Benhayoun, and A.B. Braim, “Stabilization of continuous-time fractional positive systems with delays and asymmetric control bounds,” J. Dyn. Syst. Meas. Control, vol. 141, no. 5, p. 8, 2019.
  • [8] A. Rantzer, “Distributed control of positive systems,” Eur. J. Control, vol. 24, no. 1, pp. 72–80, 2015.
  • [9] C. Walker, “Positive solutions of some parabolic system with cross-diffusion and nonlocal initial conditions,” NoDea-Nonlinear Differ. Equ. Appl., vol. 19, no. 1, p. 195–218, 2012.
  • [10] M. Zheng and Y. Ohta, “Positive fir system identification using maximum entropy prior,” IFAC PapersOnLine, vol. 51, no. 15, pp. 7–12, 2018.
  • [11] R. Drummond, M.C. Turner, and S.R. Duncan, “External positivity of linear systems by weak majorisation,” in 2019 American Control Conference (ACC), 2019, pp. 5191–5196.
  • [12] Y. Ebihara, “Construction of externally positive systems for discrete-time lti system analysis,” IFAC PapersOnLine, vol. 51, no. 25, p. 447–452, 2018.
  • [13] C. Grussler and A. Rantzer, “Modified balanced truncation preserving ellipsoidal cone-invariance,” in 53rd IEEE Conference on Decision and Control (CDC). United States: Institute of Electrical and Electronics Engineers Inc., 2014, p. 2365–2370.
  • [14] C. Grussler and A. Rantzer, “A tractable second-order cone certificate for external positivity with application to model order reduction,” arXiv:1906.06139v1, vol. 1, no. 1, pp. 1–10, 2019.
  • [15] C. Grussler, J. Umenberger, and I. Manchester, “Identification of externally positive systems,” in 2017 IEEE 56th Annual Conference on Decision and Control, CDC 2017, vol. 2018-January. United States: Institute of Electrical and Electronics Engineers Inc., 1 2018, pp. 6549–6554.
  • [16] C. Altafini, “Representing externally positive systems through minimal eventually positive realizations,” in 54th IEEE Conference on Decision and Control (CDC), 2015, pp. 6385–6390.
  • [17] C. Altafini, “Minimal eventually positive realizations of externally positive systems,” Automatica, vol. 68, no. 6, pp. 140–147, 2016.
  • [18] R. Caponetto, G. Dongola, L. Fortuna, and I. Petras, “Fractional order systems: Modeling and Control Applications,” in World Scientific Series on Nonlinear Science, L.O. Chua, Ed. Berkeley: University of California, 2010, pp. 1–178.
  • [19] S. Das, Functional Fractional Calculus for System Identyfication and Control. Berlin: Springer, 2010.
  • [20] A. Dzieliński, D. Sierociuk, and G. Sarwas, “Some applications of fractional order calculus,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 58, no. 4, pp. 583–592, 2010.
  • [21] C. Gal and M. Warma, “Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions,” Evol. Equ. Control Theory, vol. 5, no. 1, pp. 61–103, 2016.
  • [22] I. Podlubny, Fractional Differential Equations. San Diego: Academic Press, 1999.
  • [23] D. Sierociuk, T. Skovranek, M. Macias, I. Podlubny, I. Petras, A. Dzielinski, and P. Ziubinski, “Diffusion process modeling by using fractional-order models,” Appl. Math. Comput., vol. 257, no. 1, pp. 2–11, 2015.
  • [24] E. Popescu, “On the fractional cauchy problem associated with a feller semigroup,” Math. Rep., vol. 12, no. 2, pp. 181–188, 2010.
  • [25] T. Kaczorek, “Reduced-order fractional descriptor observers for a class of fractional descriptor continuous-time nonlinear systems,” Int. J. Appl. Math. Comput. Sci., vol. 26, no. 2, pp. 277–283, 2016.
  • [26] R. Almeida and D.F.M. Torres, “Necessary and sufficient conditions for the fractional calculus of variations with caputo derivatives,” Commun. Nonlinear Sci. Numer. Simul., vol. 16, no. 3, pp. 1490–1500, 2011.
  • [27] B. Baeumer, S. Kurita, and M. Meerschaert, “Inhomogeneous fractional diffusion equations,” Fract. Calc. Appl. Anal., vol. 8, no. 4, pp. 371–386, 2005.
  • [28] M. Dlugosz and P. Skruch, “The application of fractional-order models for thermal process modelling inside buildings,” J. Build. Phys., vol. 1, no. 1, pp. 1–13, 2015.
  • [29] A. Kochubei, “Fractional-parabolic systems, preprint, arxiv: 1009.4996 [math.ap],” 2011.
  • [30] W. Mitkowski, “Approximation of fractional diffusion-wave equation,” Acta Mech. Automatica, vol. 5, no. 2, pp. 65–68, 2011.
  • [31] A. Rauh, L. Senkel, H. Aschemann, V.V. Saurin, and G. Kostin, “An integrodifferential approach to modeling, control, state estimation and optimization for heat transfer systems,” Int. J. Appl. Math. Comput. Sci., vol. 26, no. 1, pp. 15–30, 2016.
  • [32] T. Kaczorek, “Practical stability of positive fractional discrete-time systems” Bull. Pol. Acad. Sci. Tech. Sci., vol. 56, no. 4, pp. 313–317, 2008.
  • [33] T. Kaczorek, “Positive fractional linear systems,” PAR magazine, vol. 2011, no. 2, pp. 91–112, 2011.
  • [34] T. Kaczorek, “Positive stable realizations of fractional continuous-time linear systems,” Int. J. Appl. Math. Comput. Sci., vol. 21, no. 4, pp. 697–702, 2011.
  • [35] T. Kaczorek, “Stability of interval positive fractional discrete-time linear systems,” Int. J. Appl. Math. Comput. Sci., vol. 28, no. 3, pp. 451–456, 2018.
  • [36] T. Kaczorek, “Singular fractional linear systems and electrical circuits,” Int. J. Appl. Math. Comput. Sci., vol. 21, no. 2, pp. 379–384, 2011.
  • [37] T. Kaczorek, Selected Problems of Fractional Systems Theory. Berlin: Springer, 2011.
  • [38] K. Oprzędkiewicz, “Positivity problem for the class of fractional order, distributed parameter systems.” ISA Trans., vol. 112, no. 1, pp. 281–291, 2021.
  • [39] K. Oprzędkiewicz, K. Dziedzic, and W. Mitkowski, “Accuracy analysis of the fractional order, positive, state space model of heat transfer process,” in MMAR 2021: 25th international conference on Methods and Models in Automation and Robotics, Poland, 2021, pp. 325–330.
  • [40] K. Oprzędkiewicz, W. Mitkowski, and M. Rosol, “Fractional order model of the two dimensional heat transfer process.” Energies, vol. 14, no. 19, pp. 1–17, 2021.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9fcebb3a-5711-48f0-a038-f2d7e7ba2662
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.