PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A method of estimation of the caloric value of the biomass. Part I - biomass energy potential

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The caloric value of the crops is one of the fundamental parameters to be determined during the process of biomass production for the energy purposes. The variety of biomass and its reaction to the environmental and agrotechnical conditions forces the utilization of particularly accurate algorithms during the determination of the caloric value of the crops. While determining the caloric value of the directly combusted crops, the coefficients for the raw state caloric value should be used. Violation of this rule causes significant overestimation of the end-results. Using the biomass for the biogas production, the energy balance should take the methane into account. The literature data shows quite a big difference in gas production from various substrates (from 368 up 722 Ndm3 per kg of dry mass) as well as a significant difference in the methane content (from 53 up to 76%). While planning the substrates selection for a biogas production plant, special attention should be put on proper estimation of the over mentioned coefficients.
Rocznik
Strony
189--192
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
  • Faculty of Mechanical Engineering, Department of Agrobiotechnology, Koszalin University of Technology, Raclawicka 15-17, 75-620, Koszalin, Poland
Bibliografia
  • 1. Majtkowski W. (2006). Biodiversity of energy crops is the basis of sustainable development. Problems of the Agricultural Engineer 2, pp. 25-36. (in Polish)
  • 2. Nowicki M. (2004). Prospects for the use of renewable energy sources in Poland 2. pp. 12-15. (in Polish)
  • 3. Roszkowski A. (2008). Biomass versus agriculture. Agricultural Engineering, Vol. 10, No. 108, pp. 201-208. (in Polish)
  • 4. Szczukowski S., Kościk B., Kowalczyk-Juśko A., Tworkowski J. (2006). Cultivation and use of alternative crops for energy purposes. Fragmenta Agronomica (XXIII), Vol. 91, No. 3, pp. 300-315. (in Polish)
  • 5. Skeel V.A., Gibson D.J. (1996). Physiological performance of Andropogon gerardi, Panicum virgatum and Sorghastrum nutans on reclaimed mine spoil. Restoration Ecology, Vol. 4, No. 4, pp. 355-367.
  • 6. Yuan J.S., Tiller K.H., Al-Ahmad H., Stewart N.R., Steward C.N. Jr. (2008). Plants to power: bioenergy to fuel the future. Trends in Plant Science, Vol. 13, No. 8, pp. 421-429.
  • 7. Perttu K.L. (1993). Biomass production and nutrient removal from municipal wastes using willow vegetation filters. Journal of Sustainable Forestry. Vol. 3, No. 1, pp. 57-70.
  • 8. Rosenqvist H., Roos A., Ling E., Hektor B. (1999). Willow growers in Sweden. Biomass Bioenergy, Vol. 18. pp. 137-145.
  • 9. Szczukowski S., Budny J. (2008). Willow shrub–energetic plant. http://www.bip.wfosigw.olsztyn.pl (in Polish)
  • 10. Börjesson P.I. (1996). Energy analysis of biomass production and transportation. Biomass Bioenergy, Vol. 11, pp. 305-318.
  • 11. Scholz V., Ellerbrock R. (2002). The growth productivity, and environmental impact of the cultivation of energy crops on sandy soil in Germany. Biomass and Bioenergy, Vol. 23, No. 2, pp. 81-92.
  • 12. Dahlgren L. (1999). The Reed of R&D contributions and measures of stimulants for bio energy from the agricultural sector. Journal of the Swedish Seed Association. Vol. 109, No. 2, pp. 104-111.
  • 13. Sanderson M.A., Reed R.L. et al. (1997). Switchgrass management for a biomass energy feedstock in Texas. Procc. of the XVIII Intern. Grassland Congress, Winipeg & Saskatoon, Canada, pp. 19-5 –19-6.
  • 14. Gambuś, Wieczorek J. (2003). Evaluation of the fertilizer value of selected sludge from the municipal sewage treatment plant. Zesz. Prob. Post. Agricultural Science. Vol. 493. pp. 759-766. (in Polish)
  • 15. Kaniuczak J., Hajduk E., Zamorska J., Ilek M. (2009). Characteristics of sewage sludge in terms of suitability for natural use. Polish Soil Science Association, Scientific Letters, Book 11. pp. 89-94. (in Polish)
  • 16. Żukowska G., Flis-Bujak M., Baran S. (2002). Effect of fertilization with sludge on organic matter of light soil under wicker cultivation. Acta Agrophisica, pp. 357-367. (in Polish)
  • 17. Kalembasa D., Malinowska E. (2007). Effect of sludge doses on yield and chemical composition of grass Miscanthus Sacchariflorus. Fragmenta Agronomica, Vol. 93, No. 1, pp. 113-118. (in Polish)
  • 18. Gondek K., Filipek-Mazur B. (2006). Evaluation of the efficiency of fertilization with sewage sludge on the basis of plant yield and nutrient utilization. Acta Sci. Pol., Formatio Circumiectus Vol. 5, pp. 39-50. (in Polish)
  • 19. Starczewski J., Dopka D., Korsak-Adamowicz M. (2008). Evaluation of energy efficiency of selected rye rye growing technologies. Acta Agrophysica Vol. 11, pp. 733-739. (in Polish)
  • 20. Dopka D. (2004). Energy efficiency of differentiated presowing crop on the example of winter triticale. Annales UMCS, Sec. E. 59, 4, pp. 2015-2022. (in Polish)
  • 21. Hryniewicz M., Grzybek A. (2010). Comparison of unit energy consumption of cumulative crop of willow, miscanthus and mallow, Modeling of energetic use of biomass, collective work edited by editors A. Grzybek, ITP Warszawa, ISBN 978-83-62416-08-0, pp. 145-157. (in Polish)
  • 22. Kamionka J., Kaliński S. (2009). Expenditure on the establishment of energetic willow plantations. Problems of the Agricultural Engineer 2 (64), pp. 147-152. (in Polish)
  • 23. Kwaśniewski D. (2006). Evaluation of selected willow growing technologies in the aspect of expenditures incurred. Agricultural Engineering 3 (78), pp. 217-224. (in Polish)
  • 24. Shapouri H., Duffirld J.A., Wang M. (2003). The energy balance of corn ethanol revisited. Trans. ASAE. Vol. 46, No. 4, pp. 959-968.
  • 25. Kallivroussis L., Natsis A., Papadakis G. (2002). The energy balance of sunflower production for biodiesel in Greece. Biosystem Eng. Vol. 81, nr 3, pp. 347-354.
  • 26. Roszkowski A. (2008). Energy efficiency of different ways of producing and using biomass. Studies and Reports of IUNG and PIB, 11, Cultivation of energy crops and use of agricultural production space in Poland, pp. 101-112. (in Polish)
  • 27. Harasim A. (1997). Possibilities of compensating the negative impact of the stand on the yield and efficiency of winter wheat production. II. Economic and Energy Efficiency. Pam. Pul. 111, pp. 73-87. (in Polish)
  • 28. Kopetz H., Jossart J.M., Ragossnicg H., Metschina C. (2007). European Biomass Statistics 2007. AEBIOM. Bruksela. p. 73.
  • 29. Ramsay W. (2007). Security of energy supply in the European Union International Energy Agency. Melnik. 31 May 2007
  • 30. Pawlak J. (2010). Economic efficiency of biomass production from willow willow in the light of model studies, Modeling of energetic use of biomass, collective work edited by editors A. Grzybek, ITP Warszawa, ISBN 978-83-62416-08-0, pp.158-170. (in Polish)
  • 31. Wójcicki Z. (2002). Equipment and material and energy expenditure in development farms. IBMER Warsaw. ISBN 83-86264-62-4. (in Polish)
  • 32. Węgrzyn A., Zając G. (2008). Selected aspects of energy efficiency research of biomass production technology. Acta Agrophysica 11 (3), pp. 799-806. (in Polish)
  • 33. Pasyniuk P. (2009). Problems of the collection of willow shrubs for energy purposes. Problems of the Agricultural Engineer 1 (63), pp. 105-112. (in Polish)
  • 34. Klikocka H. (2006). Energy efficiency of different tillage and natural fertilization methods in potato production. Acta Agrophysica 8 (2), pp. 385-393. (in Polish)
  • 35. Karwowski T. (1998). The basis of collective use of machines (ZUM) IBMER Warsow. (in Polish)
  • 36. Kościk B. (2013). Theory and practice of estimating the potential of biomass for energy purposes. www.workshops/./conference/lectures/bones (in Polish)
  • 37. Roszkowski A. (2009). Energy and agriculture (energy crisis-efficiency-agriculture), Agricultural Engineering 4 (102), pp. 25-34. (in Polish)
  • 38. Faber A., Stasiak M., Kuś J. (2007). Initial ocean productivity of selected species of energy crops. Advances in Plant Protection, 47 (4), pp. 339-346. (in Polish)
  • 39. Niedziółka I., Zuchniarz A., (2006). Energy analysis of selected types of biomass of vegetable origin, MOTROL, 2006, 8A, pp. 232-237. (in Polish)
  • 40. Fugol M., Szlachta J. (2010). Utilization of corn silage and pig manure for biogas production. Agricultural Engineering 1 (119), pp. 169-174. (in Polish)
  • 41. Kacprzak A., Krzystek L., Ledakowicz S. (2010). Research on the biochemical potential of methanogenic selected energy crops. Inż. Ap. Chem. 2010, 49, 4, pp. 32-33. (in Polish)
  • 42. Piskier T., Sekutowski T.R. (2013). Possibility of using topinambur for energy purposes in Polish conditions, Green energy, green houses – new challenges for Poland, ISBN 978-83-7780-625-8, pp. 53-61. (inPolish)
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9fc7c0e0-6d99-4858-ac53-b4e5522b11d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.