PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on feature extraction and dynamic properties of bubbles in a liquid-phase flow field

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To study the dynamic properties of bubbles generated at different air pressures in a liquid-phase flow field, this paper adopted high-speed camera technology and image processing techniques to extract and calculate the features of bubbles. The results showed that in a deionized water field, the bubbles generated at the air pressure of 0.1 MPa had an average diameter of 4.50 mm, and the bubbles generated at the air pressures of 0.2 MPa and 0.3 MPa had average diameters of 5.74 mm and 5.76 mm respectively; notwithstanding the insignificant differences in average data, the probability distribution of bubble diameter had significant differences with different pressures. During the rise of bubbles, their motion trajectory witnessed an increased amplitude of swing with the increase of air pressure; the bubbles generated at different air pressures did not show any significant differences in rising velocities though.
Rocznik
Strony
268--277
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • College of Mining Engineering, Taiyuan University of Technology
  • School of Mining Engineering, Heilongjiang University of Science and Technology
autor
  • College of Mining Engineering, Taiyuan University of Technology
autor
  • College of Mining Engineering, Taiyuan University of Technology
autor
  • College of Mining Engineering, Taiyuan University of Technology
Bibliografia
  • AMIRNIA, S., BRUYN, J. R. D., BERGOUGNOU, M. A., MARGARITIS, A., 2013. Continuous rise velocity of air bubbles in non-Newtonian biopolymer solutions, Chemical Engineering Science 94(5), 60−68.
  • FAN, W., MA, Y., LI, X., LI, H., 2009. Study on the flow field around two parallel moving bubbles and interaction between bubbles rising in CMC solutions by PIV, Chinese Journal of Chemical Engineering 17(6), 906-913.
  • GRAU, R. A., HEISKANEN, K., 2005. Bubble size distribution in laboratory scale flotation cells, Minerals Engineering 18, 1164-1172.
  • GU, H., GUO, L., 2008. Shape of Isolated Bubble in Downwardly Inclined Gas-Liquid Two-phase Flows, Nuclear Power Engineering 29, 30-34.
  • GU, H., GUO, L., ZHANG, X., WANG, Z., 2006. The shape of isolated bubble in Intermittent flows in horizontal straight tube, Journal of engineering thermophysics 27, 433-436.
  • GUO, R., CAI, Z., GAO, Z., 2009. The Motion Characteristics of a Single Bubble in Stagnant Highly Viscous Liquids, Journal of Chemical Engineering of Chinese Universities 23, 916-921.
  • HABBERMAN, W. L., MORTON, R. K., 1953. An experimental investigation of the drag and shape of air bubbles rising in various liquids, Navy Department Report 802, Washington D.C., 1-47.
  • JAMIALAHMADI, M., BRANCH, C., MULLER-STEINHAGEN, H., 1994. Terminal bubble rise velocity in liquids, Chem. Eng. Res. Des. 72(A), 119-122.
  • KULKARNI, A. A., JOSHI, J. B., 2005. Bubble formation and bubble rise velocity in gas-liquid systems: a review, Ind. Eng. Chem. Res. 44, 5873-5931.
  • LESAGE, F. J., MARIOS, F., 2013. Experimental and numerical analysis of quasi-static bubble size and shape characteristics at detachment, International Journal of Heat and Mass Transfer 64(3), 53−69.
  • LETZEL, M., 1998. Hydrodynamics and mass transfer in bubble columns at elevated pressures, Ph. D. Thesis. Delft University.
  • LIU, Z., ZHENG, Y., 2006. PIV study of bubble rising behavior, Powder Technology 168, 10-20.
  • LIU, Z., ZHENG, Y., JIA, L., ZHANG, Q., 2005. Study of bubble induced flow structure using PIV, Chemical Engineering Science 60, 3537-3552.
  • LUO, X., ZHANG, J., TSUCHIYA, K., FAN, L., 1997. On the rise velocity of bubbles in liquid-solid suspensions at elevated pressure and temperature, Chem. Eng. Sci. 52(21-22), 3693.
  • MENDELSON, H. D., 1967. The prediction of bubble terminal velocities from wave theory, AIChE J. 13, 250-253.
  • NICKENS, H. V., YANNITELL, D. W., 1987. The effects of surface tension and viscosity on the rise velocity of a large gas bubble in a closed vertical liquid-filled tube, Int. J. Multiphase Flow 13(1), 57-69.
  • PETERS, F., ELS C.., 2012. An experimental study on slow and fast bubbles in tap water, Chemical Engineering Science 82(1), 194−199.
  • RAYMOND, F., ROSANT, J. M., 2000. A numerical and experimental study of the terminal velocity and shape of bubbles in viscous liquids, Chem. Eng. Sci. 55(5), 943-955.
  • SAITO, T., SAKAKIRBARA, K., MIYAMOTO, Y., YAMADA, M., 2006. A study of surfactant effects on the liquid-phase motion around a zigzagging-ascent bubble using a recursive cross-correlation PIV, Chemical Engineering Journal 158, 39-50.
  • SURESH, M., MANI, A., 2012. Experimental studies on bubble characteristics for R134a–DMF bubble absorber, Experimental Thermal and Fluid Science 39, 79−89.
  • TATE, T., 1864. On the magnitude of a drop of liquid formed under different circumstances, Philos. Mag. 27, 176–180.
  • TERASAKA, K., TSUGE, H., MATSUE, H., 1999. Bubble formation in co-currently upward flowing liquid. Can. J. Chem. Eng. 77, 458-464.
  • YAN, H., ZHAO, G., LIU, L., DUAN, J., 2016. Experimental study on shape and rising behavior of single bubble in stagnant water, Journal of Central South University (Science and Technology) 47, 2513-2520.
  • YANG, G. Q., DU, B., FAN, L. S., 2006. Bubble formation and dynamics in gas-liquid-solid fluidization - A review, Chemical engineering science 62, 2-27.
  • ZHANG, L., YANG, C., MAO, Z., 2008. Unsteady motion of a single bubble in highly viscous liquid and empirical correlation of drag coefficient, Chem. Eng. Sci. 63(8), 2099-2106.
  • ZHANG, Y., NI, J., LI, W. Z., 2013. Experimental study on a single bubble rising in a vertical wedge-shaped channel, Journal of Experiments in Fluid Mechanics 27, 50-56.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9fc01c5b-046f-44fc-b7fa-e7631a1116d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.