PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Magmatic signature of the closure of the northern branch of Neo-Tethys : Upper Paleocene-Middle Eocene magmatism at the boundary of Tavşanlı-Sakarya Zone (Turkey)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Numerous plutons composed of granite, granodiorite, diorite-porphyry, monzonite, granodiorite-porphyry and diorite/microdiorite-porphyry occur at the boundary of the TavêanlÏ-Sakarya Zone, in the eastern part of the northwestern Anatolian magmatic belt, Turkey. These rocks belong to two different types: a medium-K calc-alkaline granodiorite series (with associated dykes and sub-volcanic rocks) and a shoshonitic series of granites. The rocks of the shoshonitic series have SiO<sub>2</sub>from 67.5 to 75.6 wt.% with Mg# from 35.1 to 59.5, whereas the medium-K calc-alkaline series rocks have SiO<sub>2</sub> between 54.6 and 67.7 wt.% with Mg# from 43.5 to 60.8. There is a clear enrichment of LILE with respect to the HFSE in all magmatic units of the region. These magmatic rocks reflect properties of collision-related arc magmatism in the various geochemical discrimination diagrams. The initial <sup87</sup>Sr/<sup>86</sup>Sr and <sup>143</sup>Nd/<sup>144</sup>Nd istopic ratios of the magmatic units range from 0.705506 to 0.710902 and 0.512178 to 0.512594, respectively. Collision-related granitoids yielded a <sup>40</Sup>Ar/<sup>39</sup>Ar cooling age age of 59.13 ±1.87 Ma, and arc-related granitoids and associated sub-volcanic units 44.3 ±0.47 and 44.11 ±0.89 Ma. The data obtained revealed that continent-continent collision in the Paleocene together with the initiation of the closure of the Neo-Tethys took place between the Anatolide-Tauride Platform and Sakarya Plate from the end of the Cretaceous. The shoshonotic granite may cooled in the Middle Paleocene, as regards the subduction-accretion zone in which subduction impacts have been observed. The medium-K calc-alkaline magmatic products in the region were formed by partial melting of the continental lithospheric mantle caused by the upwelling of asthenospheric mantle after the subducted slab was delaminated.
Rocznik
Strony
art. no. 13
Opis fizyczny
Bibliogr. 90 poz., fot., map., rys., tab., wykr.
Twórcy
  • Aksaray University, Faculty of Engineering Department of Geological Engineering, Aksaray, Turkey
  • Ankara University, Earth Sciences Application and Research Centre (YEBIM), Ankara, Turkey
  • Ankara University, Faculty of Engineering Department of Geological Engineering, Ankara, Turkey
Bibliografia
  • 1. Aldanmaz, E., Pearce, J., Thriwall, M.F., Mitchell, J., 2000. Petrogenetic evolution of late Cenozoic, postcollision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102: 67-95.
  • 2. Altinli, I.E., 1973. Orta Sakarya'nin Jeolojisi (in Turkish). 50th Anniversary of the Republic, Earth Sciences Congress, Ankara: 159-190.
  • 3. Altunkaynak, Ş., 2007. Collision-driven slab breakoff magmatism in northwestern Anatolia, Turkey. The Journal of Geology, 115: 63-82.
  • 4. Altunkaynak, Ş., Dilek, Y., 2006. Timing and nature of post collisional volcanism in Western Anatolia and geodynamic implications. GSA Special Paper, 409: 321-351.
  • 5. Altunkaynak, Ş., Dilek, Y., 2013. Eocene mafic volcanism in northern Anatolia: its causes and mantle sources in the absence of active subduction. International Geology Review, 55: 1641-1659.
  • 6. Altunkaynak, Ş., Dilek, Y., Genę, C.§., Sunal, G., Gertisser, R., Furnes, H., Foland, K.A., Yang, Y., 2012a. Spatial, temporal and geochemical evolution of Oligo-Miocene granitoid magmatism in western Anatolia, Turkey. Gondwana Research, 21: 961-986.
  • 7. Altunkaynak, Ş., Sunal, G., Aldanmaz, E., Genç, C. Ş., Dilek, Y., Furnes, H., Foland, K.A., Yang, J., Yildiz, M., 2012b. Eocene granitic magmatism in NW Anatolia (Turkey) revisited: new implications from comparative zircon SHRIMP U-Pb and 40Ar-39Ar geochronology and isotope geochemistry on magma genesis and emplacement. Lithos,155: 289-309.
  • 8. Aydoğan, M.S., Coban, H., Bozcu, M., Akinci, Ö., 2008. Geochemical and mantle-like isotopic (Nd, Sr) composition of the Baklan Granite from the Muratdaği Region (Banaz, Utak), Western Turkey: implications for input of juvenile magmas in the source domains of western Anatolia Eocene-Miocene granites. Journal of Asian Earth Sciences, 33: 155-176.
  • 9. Aysal, N., Şahin, S.Y., Güngör, Y., Peytcheva, I., Öngen, S., 2018. Middle Permian-early Triassic magmatism in the Western Pontides, NW Turkey: geodynamic significance for the evolution of the Paleo-Tethys. Journal of Asian Earth Sciences, 164: 83-103.
  • 10. Bağci, M., Demirbilek, M., Ilbeyli, N., Yildiz, A., Kibici, Y., 2019. Geochronological and geochemical constraints and origin of the Tavşanli Zone plutonie rocks (NW Turkey). Turkish Journal of Earth Sciences, 28: 60-84.
  • 11. Ballouard, C., Poujol, M., Boulvais, P., Branquet, Y., Tartčse, R., Vigneresse, J.L., 2016. Nb-Ta fractionation in peraluminous granites: a marker of the magmatic-hydrothermal transition. Geology, 44: 231-234.
  • 12. Briqueo, L., Lancelot, J.R., 1979. Rb-Sr systematics and crustal contamination models for calc-alkaline igneous rocks. Earth and Planetary Science Letters, 43: 385-396.
  • 13. Cox, K.G., Bell, J.D., Pankhurst, R.J., 1979. The Interpretation of Igneus Rocks. George, Allen and Unwin, London.
  • 14. Demirbilek, M., Mutlu, H., Fallick, A.E., Sariiz, K., Kibici, Y., 2018. Petrogenetic evolution of the Eocene granitoids in eastern part of the Tavşanli Zone in northwestern Anatolia, Turkey. Lithos, 314-315: 236-259.
  • 15. Didier, J., Barbarin, B., 1991. Enclaves and granite petrology. Developments in Petrology, 13.
  • 16. Dilek, Y., Altunkaynak, S., 2009. Geochemical and temporal evolution of Cenozoic magmatism in western Turkey: mantle response to collision, slab breakoff, and lithospheric tearing in an orogenic belt. Geological Society Special Publications, 311: 213-233.
  • 17. Edwards, A., Menzies, M., Thirlwall, M., 1991. Evidence from Muriah, Indonesia, for the interplay of supra-subduction zone and intraplate processes in the genesis of potassic alkaline magmas. Journal of Petrology, 32: 555-592.
  • 18. Elmas, A., Koralay, E., Duru, O., Schmidt, A., 2016. Geochronology, geochemistry, and tectonic setting of the Oligocene magmatic rocks (Marmaros magmatic assemblage) in Gökçeada Island, northwest Turkey. International Geology Review, 59: 420-447.
  • 19. Ersoy, E.Y., Palmer, M.R., 2013. Eocene-Quaternary magmatic activity in the Aegean: implications for mantle metasomatism and magma genesis in an evolving orogeny. Lithos, 180-181: 5-24.
  • 20. Evensen, N.M., Hamilton, P.J., O'Nions, R.K., 1978. Rare earth abundances in chondritic meteorites. Geochimica et Cosmochimica Acta, 42: 1199-1212.
  • 21. Eyuboglu, E., Chung, S.L., Santosh, M., Dudas, F.O., Akaryali, E., 2011. Transition from shoshonitic to adakitic magmatism in the eastern Pontides, NE Turkey: implications for slab window melting. Gondwana Research, 19: 413-429.
  • 22. Faure, G., 1986. Principles of Isotope Geology. John Wiley and Sons Inc., Canada.
  • 23. Gautier, Y., 1984. Déformations et métamorphismes associés à la fermeture téthysienne en Anatolie Centrale (Région de Sivrihisar, Turquie). Ph.D. Thesis, University Paris.
  • 24. Genç, C. Ş., 1998. Evolution of the Bayramiç magmatic complex. Journal of Volcanology and Geothermal Research, 85: 233-249.
  • 25. Göçmengil, G., Karacik, Z., Genç, C. Ş., Prelevic, D., Billor, Z., 2019. 40Ar-39Ar ages and petrogenesis of middle Eocene postcollisional volcanic rocks along the Izmir-Ankara-Erzincan suture zone, NE Turkey. Journal of Asian Earth Sciences, 173: 121-142.
  • 26. Güleç, N., 1991. Crust-mantle interaction in western Turkey: implications from Sr and Nd isotope geochemistry of Tertiary and Quaternary volcanics. Geological Magazine, 128: 417-435.
  • 27. Güllü, B., 2012. Temporal and spatial relations of Topkaya and Karakaya (Eskişehir) granitoids. Ph.D. Thesis, Ankara University.
  • 28. Güllü, B., Kadioğlu, Y.K., 2012. Nature of tourmaline bearing quartz veins: Karakaya (Kaymaz) Intrusive Body, Eskişehir, Turkey (in Turkish with English summary). Yüzüncü Yil University Journal of The Institute of Natural and Applied Sciences, 17: 20-28.
  • 29. Güllü, B., Kadioğlu, Y.K., 2017. Use of tourmaline as a potential petrogenetic indicator in the determination of host magma: CRS, XRD and PED-XRF Methods. Spectrochimica Acta Part A, 183: 68-74.
  • 30. Gülmez, F., Genç, C.Ş., Keskin, M., Tüysüz, O., 2013. A post-collision slab breakoff model for the origin of the Middle Eocene magmatic rocks of the Armutlu-Almacik Belt, NW Turkey and its regional implications. Geological Society Special Publications, 372: 107-139.
  • 31. Harris, N.B.W., Pearce, J.A., Tindle, A.G., 1986. Geochemical characteristics of collision-zone magmatism. Geological Society Special Publications, 19: 67-81.
  • 32. Harris, N.B.W., Kelley, S., Okay, A.I., 1994. Post-collisional magmatism and tectonics in northwest Anatolia. Contributions to Mineralogy and Petrology, 117: 241-252.
  • 33. Harrison, T.M., Watson, E.B., 1984. The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochimica et Cosmochimica Acta, 48: 1468-1477.
  • 34. He, S., Li, Z., Jehani, A.A.., Guo, D., Harbi, Z., Zhang, Y., 2021. Nb-Ta behaviour during magma-to-pegmatite transformation process: record from zircon megacrysts in pegmatite. Minerals, 11: 1139.
  • 35. Hibbard, M.J., 1991. Textural anatomy of twelve magma-mixed granitoid systems. Developments in Petrology, 13: 431-444.
  • 36. Irvine, T.N., Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences,8: 523-548.
  • 37. Ílbeyli, N., Kibici, Y., 2009. Collision-related granite magma genesis, potential sources and tectono-magmatic evolution: comparison between central, northwestern and western Anatolia (Turkey). International Geology Review, 51: 252-278.
  • 38. Jacobsen, S.B., Wasserburg, G.J., 1980. Sm-Nd isotopic systematics of chondrites and achondrites. Meteoritics, 15: 307-308.
  • 39. Janasi, V.A., Montanheiro, T.J., Freitas, V.A., Reis, P.M., Negri, F.A., Dantas, F.A., 2007. Geology, petrography and geochemistry of the acid volcanism of the Paraná Magmatic Province in the Piraju-Ourinhos region, SE Brazil. Revista Brasileira de Geociencias, 37: 745-759.
  • 40. Johnston, B., 2001. Magmatic enclaves and evidence for magma mixing in the OAK point gran ite, Deer Isle, Maine, USA. MSc. Thesis, The University of Maine.
  • 41. Karacik, Z., Yilmaz, Y., Pearce, J.A., Ece, O.I., 2008. Petrochemistry of the south Marmara granitoids, northwest Anatolia, Turkey. International Journal of Earth Sciences, 97: 1181-1200.
  • 42. Karsli, O., Dokuz, A., Uysal, I., Aydin, F., Kandemir, R., Wijbrans, J., 2010. Generation of the Early Cenozoic adakitic volcanism by partial melting of mafic lower crust, Eastern Turkey: implications for crustal thickening to delamination. Lithos, 114: 109-120.
  • 43. Karsli, O., Dokuz, A., Aydin, F., Uysal, I., Tengün, F., Kandemir, R., Santos, J.F., Andersen, T., 2020. Tracking the timing of Neotethyan oceanic slab break-off: geochronology and geochemistry of the quartz diorite porphyries, NE Turkey. Journal of Asian Earth Science, 200: 104-456.
  • 44. Kasapoğlu, B., Ersoy, Y.E., Uysal, I., Palmer, M.R., Zack, T., Koralay, E.O., Karlsson, A., 2016. The petrology of Paleogene volcanism in the Central Sakarya, Nallihan Region: implications for the initiation and evolution of post-collisional, slab break-off-related magmatic activity. Lithos, 246: 81-98.
  • 45. Kaygusuz, A., Arslan, M., Siebel, W., Şen, C., 2011. Geochemical and Sr-Nd isotopic characteristics of post-collisional calc-alkaline volcanics in the Eastern Pontides (NE Turkey). Turkish Journal of Earth Sciences, 20: 137-159.
  • 46. Keskin, M., 2002. FC-Modeler: a Microsoft Excel spreadsheet program for modeling Rayleight fractionation vectors in closed magmatic systems. Computer and Geosciences, 28: 919-928.
  • 47. Keskin, M., Genç, S.C., Tüysüz, O., 2008. Petrology and geochemistry of post-collisional Middle Eocene volcanic units in North-Central Turkey: evidence for magma generation by slab breakoff following the closure of the Northern Neotethys Ocean. Lithos, 104: 267-305.
  • 48. Koralay, T., Deniz, K., Duman, B., Kadioğlu, Y.K., 2021. Mineralogical and geochemical characterization and implications for provenance of Roman granite columns in ancient Tripolis (Denizli, Turkey). Arabian Journal of Geosciences, 14: 420.
  • 49. Köprübaţi, N., Aldanmaz, E., 2004. Geochemical constraints on the petrogenesis of Cenozoic I-type granitoids in northwest Anatolia, Turkey: evidence for magma generation by lithospheric delamination in a post-collisional setting. International Geology Review, 46: 705-729.
  • 50. Krmiček, L., Cempírek, J., Havlín, A., Přichystal, A., Houzar, S., Krmíčková, M., Gadas, P., 2011. Mineralogy and petrogenesis of a Ba-Ti-Zr-rich peralkaline dyke from Šebkovice (Czech Republic): recognition of the most lamproitic Variscan intrusion. Lithos, 121: 74-86.
  • 51. Maniar, P.D., Piccoli, P.M., 1989. Tectonic discrimination of granitioids. GSA Bulletin, 101: 635-643.
  • 52. Mason, B., Moore, C.B., 1966. Principles of Geochemistry. John Wiley and Sons, New York.
  • 53. Middlemost, E.A.K., 1975. The basalt clan. Earth-Science Reviews, 11: 337-364.
  • 54. Miller, C.F., McDowell, S.M., Mapes, R.W., 2003. Hot and cold granite? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31: 529-532.
  • 55. Nelson, S.A., 2003. Magmatic differentiation lecture note. http://www.tulane.edu/~sanelson/ geol212/magmadiff
  • 56. Okay, A.I., 1984a. The geology of the Ağvanis metamorphic rocks and neighbouring formations. Bulletin of the Mineral Research and Exploration, 99: 16-36.
  • 57. Okay, A.I., 1984b. Distribution and characteristics of the northwest Turkish blueschists. Geological Society Special Publications, 17: 455-466.
  • 58. Okay, A.I., 2002. Jadeite-chloritoid-glaucophane-lawsonite schists from northwest Turkey: unusually high P/T ratios in continental crust. Journal of Metamorphic Geology, 20: 757-768.
  • 59. Okay, A.I., 2011. Tavşanli Zone: the northern subducted margin of the Anatolide-Tauride Block. Bulletin of the Mineral Research and Exploration, 142: 191-221.
  • 60. Okay, A.I., Göncüoğlu, M.C., 2004. Karakaya Complex: a review of data and concepts. Turkish Journal of Earth Sciences, 13: 77-95.
  • 61. Okay, A.I., Satir, M., 2006. Geochronology of Eocene plutonism and metamorphism in northwest Turkey: evidence for a possible magmatic arc. Geodinamica Acta, 19: 251-266.
  • 62. Okay, A.I., Tüysüz, O., 1999. Tethyan sutures of northern Turkey. Geological Society Special Publications, 156: 475-515.
  • 63. Okay, A.I., Satir, M., Shang, C.K., 2008. Ordovician metagranitoid from the Anatolide-Tauride Block, northwest Turkey-geodynamic implications. Terra Nova, 20: 280-288.
  • 64. Okay, A.I., Tüysüz, O., Satir, M., Özkan-Altiner, S., Altiner, D., Sherlock, S., Eren, R.H., 2006. Cretaceous and Triassic subduction-accretion, HP/LT metamorphism and continental growth in the Central Pontides, Turkey. GSA Bulletin, 118: 1247-1269.
  • 65. Özyurt, M., Altunkaynak, Ş., 2020. Origin of Eocene adakitic magmatism in northwest Turkey. Journal of Asian Earth Sciences, 190: 104147.
  • 66. Pearce, J.A., 1983. Role of the sub-continental litosphere in magma genesis at active continental margins. In: Continental Basalt and Mantle Xenoliths (eds. C.J. Hawkesworth and M.J. Norry): 230-249. Shiva Publishing ltd., Cheshire.
  • 67. Pearce, J.A., 1996. Sources and setting of granitic rocks. Episodes, 19: 120-125.
  • 68. Pearce, J.A., Cann, J.R., 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 19: 290-300.
  • 69. Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25: 956-983.
  • 70. Pearce, J.A., Stern, R.J., Bloomer, S.H., Fryer, P., 2005. Geochemical mapping of the Mariana Arc-Basin system: implications for the nature and distribution of subduction components. Geochemistry, Geophysics, Geosystems, 6: 1-27.
  • 71. Rickwood, P.C., 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22: 247-263.
  • 72. Russ, G.P., Burnett, D.S., Lingenfelter, R.E., Wasserburg, G.J., 1971. Neutron capture on 149Sm in lunar samples. Earth and Planetary Science Letters, 13: 53-60.
  • 73. Schmidt, M.W., 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in amphibole barometer. Contributions to Mineralogy and Petrology, 110: 304-310.
  • 74. Sha, L.K., 1995. Genesis of zoned hydrous ultramafic/mafic-silicic intrusive complexes: an MHFC hypothesis. Earth-Science Reviews,39: 59-90.
  • 75. Shand, S.J., 1943. The Eruptive Rocks. John Wiley, New York.
  • 76. Shellnutt, J.G., Jahn, B.M., Zhou, M.F., 2011. Crustally-derived granites in the Panzhihua region, SW China: implications for felsic magmatism in the Emeishan large igneous province. Lithos, 123: 145-157.
  • 77. Shin, T.A., Catlos, E.J., Jacob, L., Black, K., 2013.Relationships between very high pressure subduction complex assemblages and intrusive granitoids in the Tavşanli Zone, Sivrihisar Massif, central Anatolia. Tectonophysics, 595-596: 183-197.
  • 78. Słaby, E., Martin, H., 2008. Mafic and felsic magma interaction in granites: the Hercynian Karkonosze Pluton (Sudetes, Bohemian Massif). Journal of Petrology, 49: 353-391.
  • 79. Sunal, G., Erturaç, M.K., Topuz, G., Okay, A.I., Sack, T., 2019. The Early Eocene Ekmekçi granodiorite porphyry in the Karacabey region (Sakarya Zone, NW Turkey). Turkish Journal of Earth Sciences, 28: 589-602.
  • 80. Tengör, A.M.C., Yilmaz, Y., 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75: 181-241.
  • 81. Wapstra, A.H., Bos, K., 1977. The 1977 atomic mass evaluation: in four parts part I. Atomic mass table. Atomic Data and Nuclear Data Tables, 19: 177-214.
  • 82. Wasserburg, G.J., Jacobsen, S.B., De Paolo, D.J., Mc Culloch, M.T., Wen, T., 1981. Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions. Geochimica et Cosmochimica Acta, 45: 2311-2323.
  • 83. Watson, E.B., Harrison, T.M., 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64: 295-304.
  • 84. Whitney, D.L., Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95: 185-187.
  • 85. Whitney, D.L., Teyssier, C., Toraman, E., Seaton, N.C.A., Fayon, A.K., 2011. Metamorphic and tectonic evolution of a structurally continuous blueschist-to-Barrovian terrane, Sivrihisar Massif, Turkey. Journal of Metamorphic Geology, 29: 193-211-752.
  • 86. Wilson, M., Bianchini, G., 1999. Tertiary-Quaternary magmatism within the Mediterranean and surrounding regions. Geological Society Special Publications, 156: 141-168.
  • 87. Yilmaz, Y., 1981. Tectonic evolution of the southern margin of the Sakarya continent, NW Turkey (in Turkish with English summary). Istanbul Earth Sciences Review, 1: 33-51.
  • 88. Zindler, A., Hart, S.R., 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493-571.
  • 89. Zheng, Y.C., Hou, Z.Q., Fu, Q., Zhu, D.C., Liang, W., Xu, P., 2016. Mantle inputs to Himalayan anatexis: insights from petrogenesis of the Miocene Langkazi leucogranite and its dioritic enclaves. Lithos, 264: 125-140.
  • 90. Zoroğlu, O., 2009. Geology, petrology and origin of enclaves of Sivrihisar-Günyüzü (Eskişehir) granitoids. Ph.D. Thesis, Ankara University.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9fbe533c-7a25-4a39-8bc7-ead4072e4d9f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.