Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Objectives was to determine the durability of pins and sleeves used in the construction of a cycloidal gear. The methods used were based on a comparative analysis of selected macro photos of their surfaces and representative surface profiles recorded before and after the bench tests and the Ra and Rz surface roughness values determined on their basis. Before and after the bench tests, the weight of each sleeve and pin was measured, their surface profiles were recorded and micro photos of these surfaces were taken. Based on each recorded surface profile, the roughness parameters Ra and Rz were determined. The advantages of using steel sleeves in the cycloidal drive structure, increasing its durability, have been demonstrated by the low mass wear of the sleeves and the low surface roughness parameters Ra and Rz. It was shown that the appropriate accuracy of the pins and sleeves is necessary.
Czasopismo
Rocznik
Tom
Strony
art. no. 2023412
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
- Casimir Pulaski Radom University, Radom, Poland
autor
- Casimir Pulaski Radom University, Radom, Poland
Bibliografia
- 1. Droździel P. The influence of the vehicle work organization conditions on the engine start-up parameters. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2008; 37: 72-4.
- 2. Batko W, Borkowski B, Głocki K. Application of database systems in machine diagnostic monitoring. Eksploatacja i Niezawodność. 2008;1: 7-10.
- 3. Dzierwa A, Gałda L, Tupaj M, Dudek K. Investigation of wear resistance of selected materials after slide burnishing process. Eksploatacja i Niezawodność – Maintenance and Reliability 2020; 22(3): 432-9. https://doi.org/10.17531/ein.2020.3.5.
- 4. Saldaña-Robles A, Plascencia-Mora H, AguileraGomez E, Saldaña Robles A, Márquez-Herrera A, Diosdado De la Peña JA. Influence of ball-burnishing on roughness, hardness and corrosion resistance of AISI 1045 steel. Surface and Coatings Technology 2018; 339 https://doi.org/10.1016/j.surfcoat.2018.02.013.
- 5. Travieso-Rodríguez JA, Jerez-Mesa R, Gómez-Gras G, Llumà-Fuentes J, Casadesús-Farràs O, MadueñoGuerrero M. Hardening effect and fatigue behavior enhancement through ball burnishing on AISI 1038. Journal of Materials Research and Technology 2019; 1; 8(6): 5639-5646.
- 6. Revankar G, Shetty R, Rao S, Gaitonde V. Analysis of surface roughness and hardness in ball burnishing of titanium alloy. Measurement 2014; 58 https://doi.org/10.1016/j.measurement.2014.08.043
- 7. Rao DS, Hebbar HS, Komaraiah M, Kempaiah UN. Investigations on the Effect of Ball Burnishing Parameters on Surface Hardness and Wear Resistance of HSLA Dual-Phase Steels. Materials and Manufacturing Processes 2008; 23(3): 295-302. https://doi.org/10.1080/10426910801937306.
- 8. Valiorgue F, Zmelty V, Dumas M, Chomienne V, Verdu C, Lefebvre F, et.al. Influence of residual stress profile and surface microstructure on fatigue life of a 15-5PH. Procedia Engineering 2018; 213: 623-9. https://doi.org/10.1016/j.proeng.2018.02.058.
- 9. Ponieważ G, Kuśmierz L. Numerical research of the influence of loading and edge support element of self aligning pad on contact zone properties. Eksploatacja i Niezawodność - Maintenance and Reliability 2007; 10-14. https://archive.ein.org.pl/2007-02-02.
- 10. Mainsah E, Greenwood JA, Chetwynd DG, editors. Metrology and Properties of Engineering Surfaces. Boston, MA: Springer US 2001.
- 11. Nowicki B. Struktura geometryczna. Chropowatość i falistość powierzchni. Warszawa: WNT 1991.
- 12. Wos S, Koszela W, Dzierwa A, Reizer R, Pawlus P. Effects of oil pocket shape and density on friction in reciprocating sliding. Eksploatacja i Niezawodność - Maintenance and Reliability 2022; 24(2): 338-45. https://doi.org/10.17531/ein.2022.2.15.
- 13. Chmurawa M. Cycloidal gears with tooth modification. Silesian Technical University, Zeszyty naukowe, Nr 1547; 2002.
- 14. Bednarczyk S. Rozwój obiegowych przekładni cykloidalnych ukierunkowany na podniesienie efektywności maszyn. Efektywność wykorzystania maszyn roboczych i urządzeń w przemyśle. Idzikowski, A. Częstochowa: WZ Politechnika Częstochowska 2013; 117-125.
- 15. Lin KS, Chan KY, Lee JJ. Kinematic error analysis and tolerance allocation of cycloidal gear reducers. Mechanism and Machine Theory 2018; 124: 73-91. https://doi.org/10.1016/j.mechmachtheory.2017.12.02 8.
- 16. Olejarczyk K, Wikło M, Kołodziejczyk K, Król K, Nowak R. Experimental impact studies of the application mineral oil and synthetic oil on the efficiency of the single-gear cycloidal. Tribologia 2017; 1: 67-73.
- 17. Olejarczyk K, Kalbarczyk M. A Geometrical surface texture study of cycloid drive discs after bench tests. Tribologia 2021; 297(3): 27-33. https://t.tribologia.eu/gicid/01.3001.0015.6894.
- 18. Warda B. Stanowisko do badania trwałości zazębienia obiegowej przekładni cykloidalnej. Tribologia 2006; 6: 131-140.
- 19. Żurowski W, Olejarczyk K, Zaręba R. Wear Assessment of Sliding Sleeves in a Single-Stage Cycloidal Drive. Advances in Science and Technology. Research Journal 2019; 13(4): 239-245. https://doi.org/10.12913/22998624/114180.
- 20. Berlato F, D’Elia G, Battarra M, Dalpiaz G. Condition monitoring indicators for pitting detection in planetary gear units. Diagnostyka 2020; 21(1): 3-10. https://doi.org/10.29354/diag/116079.
- 21. Dubaish AA, Jaber AA. Fabrication of a test rig for gearbox fault simulation and diagnosis. Diagnostyka 2023; 24(2): 1-8. https://doi.org/10.29354/diag/162541.
- 22. Olejarczyk K, Wikło M, Kołodziejczyk K. The cycloidal gearbox efficiency for different types of bearings - Sleeves vs. needle bearings. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 2019; 233(21-22): 7401-7411. https://doi.org/10.1177/0954406219859903.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9fbd44c4-cf08-4078-97d2-e29205de50b4