PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some Ostrowski’s type inequalities for functions whose second derivatives are s-convex in the second sense

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Some new inequalities of the Ostrowski type for twice differentiable mappings whose derivatives in absolute value are s-convex in the second sense are given.
Wydawca
Rocznik
Strony
37--47
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
  • Department of Mathematics Faculty of Science and Arts Ordu University Ordu, Turkey
  • Department of Mathematics Faculty of Science and Arts Düzce University Düzce, Turkey
  • Atatürk University K.K. Education Faculty Department of Mathematics 25240, Campus, Erzurum, Turkey
Bibliografia
  • [1] M. Alomari, M. Darus, Some Ostrowski’s type inequalities for convex functions with applications, RGMIA 13(1) (2010), Article 3. [ONLINE: http://ajmaa.org/RGMIA/v13n1.php]
  • [2] M. Alomari, M. Darus, S. S. Dragomir, P. Cerone, Ostrowski’s inequalities for functions whose derivatives are s-convex in the second sense, RGMIA 12 (2009), Supp., No. 15.
  • [3] P. Cerone, S. S. Dragomir J. Roumeliotis, An inequality of Ostrowski type for mappings whose second derivatives are bounded and applications, RGMIA Res. Rep. Coll. 1(1) (1998), Article 4.
  • [4] S. S. Dragomir, S. Wang, Applications of Ostrowski’s inequality to the estimation of error bounds for some special means and some numerical quadrature rules, Appl. Math. Lett. 11 (1998), 105–109.
  • [5] M. Z. Sarıkaya, On the Ostrowski type integral inequality, Acta Math. Univ. Comenianae 79(1) (2010), 129–134.
  • [6] E. Set, M. E. Özdemir, M. Z. Sarıkaya, New inequalities of Ostrowski’s type for s-convex functions in the second sense with applications, Facta Unv. Ser. Math. Inform. 27(1) (2012), 67–82.
  • [7] M. E. Özdemir, H. Kavurmaci, E. Set, Ostrowski’s type inequalities for (α, m)-convex functions, Kyungpook Math. J. 50 (2010), 371–378.
  • [8] M. Z. Sarıkaya, E. Set, M. E. Özdemir, On the integral inequalities for mappings whose second dervatives are convex and applications, Stud. Univ. Babes–Bolyai Math., in press.
  • [9] W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Raumen, Publ. Inst. Math. 23 (1978), 13–20.
  • [10] S. S. Dragomir, S. Fitzpatrick, The Hadamard’s inequality for s-convex functions in the second sense, Demonstratio Math. 32(4) (1999), 687–696.
  • [11] H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequationes Math. 48 (1994), 100–111.
  • [12] A. Ostrowski,Über die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert, Comment. Math. Helv. 10 (1938), 226–227.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9fb6922f-b2e5-4f42-ac3c-0e96e64cddb1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.