PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multimodal machine learning approach for exploring the 28-day compressive strength of nanomaterials-reinforced cement composites

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Accurately predicting the 28-day compressive strength (CS) of carbon nanotubes-reinforced cement composites (CNTRCCs) and graphene oxide-reinforced cement composites (GORCCs) is crucial for accelerating their potential application in civil engineering. However, traditional experimental and theoretical modeling methods suffer from problems, including time-consuming, costly, and inefficient. Moreover, it is also challenging to consider the effects of multiple coupling factors. In this work, a multimodal machine learning (ML) approach is proposed as the first attempt to explore the complex relationships between the CS of hybrid system containing both CNTRCCs and GORCCs. The proposed multimodal ML shows great potential in estimating the nanomaterials-reinforced cement composites with a coefficient of determination (R2) of 0.96, surpassing the single-modal ML approaches. The results demonstrate the effectiveness of the developed model in accurately predicting the 28-day CS of hybrid system containing both CNTRCCs and GORCCs. Shapley additive explanations (SHAP) analysis illustrates that the optimal concentration of CNT is approximately 0.5 wt%, and preferred length of CNT and sheet size of GO are within a range of 20–30 μm and below 10 μm, respectively. Additionally, the enhancement effect of a single-layer GO is better than its multilayer counterparts.
Rocznik
Strony
art. no. e202, 2023
Opis fizyczny
Bibliogr. 77 poz., rys., wykr.
Twórcy
autor
  • College of Civil Engineering, Nanjing Tech University, Nanjing 211816, China
autor
  • College of Civil Engineering, Nanjing Tech University, Nanjing 211816, China
autor
  • College of Civil Engineering, Nanjing Tech University, Nanjing 211816, China
autor
  • College of Civil Engineering, Nanjing Tech University, Nanjing 211816, China
autor
  • College of Civil Engineering, Nanjing Tech University, Nanjing 211816, China
autor
  • College of Civil Engineering, Nanjing Tech University, Nanjing 211816, China
autor
  • College of Civil Engineering, Nanjing Tech University, Nanjing 211816, China
autor
  • School of Engineering, RMIT University, Melbourne 3083, Australia
Bibliografia
  • 1. Huang J, Rodrigue D, Guo P. Effect of multi-wall carbon nano-tubes on the flexural performance of cement based composites. Arch Civ Mech Eng. 2021;21:80. https://doi.org/10.1007/ s43452-021-00229-z.
  • 2. Krystek M, Ciesielski A, Samorì P. Graphene-Based Cementitious Composites: Toward Next-Generation Construction Technologies. Adv Func Mater. 2021;31:2101887. https://doi.org/10.1002/adfm. 202101887.
  • 3. Najafishad S, Manesh H, Zebarjad S, Hataf N, Mazaheri Y. Pro- duction and investigation of mechanical properties and electrical resistivity of cement-matrix nanocomposites with graphene oxide and carbon nanotube reinforcements. Arch Civ Mech Eng. 2020;20:1–13. https://doi.org/10.1007/s43452-020-00059-5.
  • 4. Liew K, Kai M, Zhang L. Carbon nanotube reinforced cementitious composites: An overview. Compos Part A Appl Sci Manuf. 2016;91:301–23. https://doi.org/10.1016/j.compositesa.2016.10. 020.
  • 5. Liew K, Kai M, Zhang L. Mechanical and damping properties of CNT-reinforced cementitious composites. Compos Struct. 2017;160:81–8. https://doi.org/10.1016/j.compstruct.2016.10.043.
  • 6. Isfahani FT, Li W, Redaelli E. Dispersion of multi-walled carbon nanotubes and its effects on the properties of cement composites. Cem Concr Compos. 2016;74:154–63. https://doi.org/10.1016/j. cemconcomp.2016.09.007.
  • 7. Li X, Lu Z, Chuah S, Li W, Liu Y, Duan WH, Li Z. Effects of graphene oxide aggregates on hydration degree, sorptivity, and tensile splitting strength of cement paste. Compos Part A Appl Sci Manuf. 2017;100:1–8. https://doi.org/10.1016/j.compositesa. 2017.05.002.
  • 8. Lv S, Deng L, Yang W, Zhou Q, Cui Y. Fabrication of polycarboxylate/graphene oxide nanosheet composites by copolymerization for reinforcing and toughening cement composites. Cem Concr Compos. 2016;66:1–9. https://doi.org/10.1016/j.cemconcomp. 2015.11.007.
  • 9. Yoo D-Y, You I, Lee S-J. Electrical and piezoresistive sensing capacities of cement paste with multi-walled carbon nanotubes. Arch Civ Mech Eng. 2018;18:371–84. https://doi.org/10.1016/j. acme.2017.09.007.
  • 10. Kumar S, Kolay P, Malla S, Mishra S. Effect of multiwalled carbon nanotubes on mechanical strength of cement paste. J Mater Civ Eng. 2012;24:84–91. https:// doi. org/ 10. 1061/ (ASCE) MT. 1943-5533.0000350.
  • 11. Kumar S, Kolay P, Malla S, Mishra S. Effect of multiwalled carbon nanotube in cement composite on mechanical strength and freeze-thaw susceptibility. Adv Civ Eng Mater. 2015;4:257–74. https://doi.org/10.1520/ACEM20150006.
  • 12. Luo JL, Duan ZD, Zhao TJ, Li QY. Effect of multi-wall carbon nanotube on fracture mechanical property of cement-based composite. Adv Mat Res. 2011;146:581–4. https://doi.org/10.4028/ www.scientific.net/AMR.146-147.581.
  • 13. Chen J, Akono A-T. Influence of multi-walled carbon nanotubes on the hydration products of ordinary Portland cement paste. Cem Concr Res. 2020. https://doi.org/10.1016/j.cemconres.2020. 106197.
  • 14. Cui X, Han B, Zheng Q, Yu X, Dong S, Zhang L, Ou J. Mechanical properties and reinforcing mechanisms of cementitious composites with different types of multiwalled carbon nanotubes. Compos Part A Appl Sci Manuf. 2017;103:131–47. https://doi. org/10.1016/j.compositesa.2017.10.001.
  • 15. Yu H-S, He J-B. Fracture toughness and durability performance of highly dispersed multi-walled carbon nanotubes reinforced cement-based composites. J Adv Microsc Res. 2015;10:14–9. https://doi.org/10.1166/jamr.2015.1230.
  • 16. Jung M, Lee Y-s, Hong S-G, Moon J. Carbon nanotubes (CNTs) in ultra-high performance concrete (UHPC): Dispersion, mechanical properties, and electromagnetic interference (EMI) shielding effectiveness (SE). Cem Concr Res. 2020. https:// doi. org/ 10. 1016/j.cemconres.2020.106017.
  • 17. Manzur T, Yazdani N. Effect of Different Parameters on Properties of Multiwalled Carbon Nanotube-Reinforced Cement Composites. Arab J Sci Eng. 2016;41:4835–45. https://doi.org/10.1007/ s13369-016-2181-8.
  • 18. Sheikh TM, Anwar MP, Muthoosamy K, Jaganathan J, Chan A, Mohamed AA. The mechanics of carbon-based nanomaterials as cement reinforcement: a critical review. Constr Build Mater. 2021. https://doi.org/10.1016/j.conbuildmat.2021.124441.
  • 19. Collins F, Lambert J, Duan WH. The influences of admixtures on the dispersion, workability, and strength of carbon nanotube–OPC paste mixtures. Cem Concr Compos. 2012;34:201–7. https://doi. org/10.1016/j.cemconcomp.2011.09.013.
  • 20. Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J Mater Chem. 2006;16:155–8. https://doi.org/10.1039/B512799H.
  • 21. Li X, Korayem AH, Li C, Liu Y, He H, Sanjayan JG, Duan WH. Incorporation of graphene oxide and silica fume into cement paste: A study of dispersion and compressive strength. Constr Build Mater. 2016;123:327–35. https://doi.org/10.1016/j.conbu ildmat.2016.07.022.
  • 22. Gholampour A, Valizadeh Kiamahalleh M, Tran DN, Ozbakkaloglu T, Losic D. From graphene oxide to reduced graphene oxide: impact on the physiochemical and mechanical properties of graphene–cement composites. ACS Appl Mater Interf. 2017;9:43275–86. https://doi.org/10.1021/acsami.7b16736.
  • 23. Lv S, Liu J, Sun T, Ma Y, Zhou Q. Effect of GO nanosheets on shapes of cement hydration crystals and their formation process. Constr Build Mater. 2014;64:231–9. https://doi.org/10.1016/j. conbuildmat.2014.04.061.
  • 24. Konsta-Gdoutos MS, Metaxa ZS, Shah SP. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cem Concr Compos. 2010;32:110–5. https://doi.org/10.1016/j.cemco ncomp.2009.10.007.
  • 25. Mohsen MO, Taha R, Abu Taqa A, Al-Nuaimi N, Al-Rub RA, Bani-Hani KA. Effect of nanotube geometry on the strength and dispersion of CNT-cement composites. J Nanomater. 2017. https:// doi.org/10.1155/2017/6927416.
  • 26. Yaghobian M, Whittleston G. A critical review of carbon nanomaterials applied in cementitious composites–a focus on mechanical properties and dispersion techniques. Alex Eng J. 2022;61:3417– 33. https://doi.org/10.1016/j.aej.2021.08.053.
  • 27. Mohsen MO, Taha R, Abu Taqa A, Al-Nuaimi N, Al-Rub RA, Bani-Hani KA. Effect of Nanotube Geometry on the Strength and Dispersion of CNT-Cement Composites. J Nanomater. 2017;2017:6927416. https://doi.org/10.1155/2017/6927416.
  • 28. Mohsen MO, Alansari M, Taha R, Senouci A, Abutaqa A. Impact of CNTs’ treatment, length and weight fraction on ordinary concrete mechanical properties. Constr Build Mater. 2020. https://doi. org/10.1016/j.conbuildmat.2020.120698.
  • 29. Hawreen A, Bogas J, Dias A. On the mechanical and shrinkage behavior of cement mortars reinforced with carbon nanotubes. Constr Build Mater. 2018;168:459–70. https://doi.org/10.1016/j. conbuildmat.2018.02.146.
  • 30. Konsta-Gdoutos MS, Metaxa ZS, Shah SP. Highly dispersed carbon nanotube reinforced cement based materials. Cem Concr Res. 2010;40:1052–9. https://doi.org/10.1016/j.cemconres.2010. 02.015.
  • 31. Gao F, Tian W, Wang Z, Wang F. Effect of diameter of multiwalled carbon nanotubes on mechanical properties and microstructure of the cement-based materials. Constr Build Mater. 2020. https://doi.org/10.1016/j.conbuildmat.2020.120452.
  • 32. Manzur T, Yazdani N, Emon MAB. Effect of carbon nanotube size on compressive strengths of nanotube reinforced cementitious composites. J Mater. 2014;2014:1–8. https:// doi. org/ 10. 1155/2014/960984.
  • 33. Kothiyal N, Sharma S, Mahajan S, Sethi S. Characterization of reactive graphene oxide synthesized from ball–milled graphite: its enhanced reinforcing effects on cement nanocomposites. J Adhes Sci Technol. 2016;30:915–33. https://doi.org/10.1080/01694243. 2015.1129214.
  • 34. Wick P, Louw-Gaume AE, Kucki M, Krug HF, Kostarelos K, Fadeel B, Dawson KA, Salvati A, Vázquez E, Ballerini L, Tretiach M, Benfenati F, Flahaut E, Gauthier L, Prato M, Bianco A. Classification Framework for Graphene-Based Materials. Angew Chem Int Ed. 2014;53:7714–8. https://doi.org/10.1002/anie.20140 3335.
  • 35. Du Y, Yang J, Skariah Thomas B, Li L, Li H, Nazar S. Hybrid graphene oxide/carbon nanotubes reinforced cement paste: an investigation on hybrid ratio. Constr Build Mater. 2020. https:// doi.org/10.1016/j.conbuildmat.2020.119815.
  • 36. Wang J, Zhang L, Liew K. A multiscale modeling of CNT- reinforced cement composites. Comput Meth Appl Mech Eng. 2016;309:411–33. https://doi.org/10.1016/j.cma.2016.06.019.
  • 37. Duan Z, Zhang L, Lin Z, Fan D, Saafi M, Castro Gomes J, Yang S. Experimental test and analytical modeling of mechanical properties of graphene-oxide cement composites. J COMPOS MATER. 2018;52:3027–37. https://doi.org/10.1177/0021998318760153.
  • 38. Abdalla A, Mohammed AS. Hybrid MARS-, MEP-, and ANN- based prediction for modeling the compressive strength of cement mortar with various sand size and clay mineral metakaolin con- tent. Arch Civ Mech Eng. 2022;22:194. https://doi.org/10.1007/ s43452-022-00519-0.
  • 39. Abdalla AA, Salih MA. Theoretical models to evaluate the effect of SiO2 and CaO contents on the long-term compressive strength of cement mortar modified with cement kiln dust (CKD). Arch Civ Mech Eng. 2022;22:105. https:// doi. org/ 10. 1007/s43452-022-00418-4.
  • 40. Mahmood W, Mohammed AS, Sihag P, Asteris PG, Ahmed H. Interpreting the experimental results of compressive strength of hand-mixed cement-grouted sands using various mathematical approaches. Arch Civ Mech Eng. 2021;22:19. https://doi.org/10. 1007/s43452-021-00341-0.
  • 41. Ibrahim AK, Dhahir HY, Mohammed AS, Omar HA, Sedo AH. The effectiveness of surrogate models in predicting the long-term behavior of varying compressive strength ranges of recycled concrete aggregate for a variety of shapes and sizes of speci- mens. Arch Civ Mech Eng. 2023;23:61. https://doi.org/10.1007/ s43452-022-00595-2.
  • 42. Huang J, Liew J, Liew K. Data-driven machine learning approach for exploring and assessing mechanical properties of carbon nanotube-reinforced cement composites. Compos Struct. 2021. https:// doi.org/10.1016/j.compstruct.2021.113917.
  • 43. Li Y, Li H, Shen J. The study of effect of carbon nanotubes on the compressive strength of cement-based materials based on machine learning. Constr Build Mater. 2022. https://doi.org/10. 1016/j.conbuildmat.2022.129435.
  • 44. Yang J, Fan Y, Zhu F, Ni Z, Wan X, Feng C, Yang J. Machine Learning Prediction of 28-Day Compressive Strength of CNT/ Cement Composites with Considering Size Effects. Compos Struct. 2023. https://doi.org/10.1016/j.compstruct.2023.116713.
  • 45. Adel H, Palizban SMM, Sharifi SS, Ghazaan MI, Korayem AH. Predicting mechanical properties of carbon nanotube-reinforced cementitious nanocomposites using interpretable ensemble learn- ing models. Constr Build Mater. 2022. https://doi.org/10.1016/j. conbuildmat.2022.129209.
  • 46. Ranjbar I, Toufigh V. Deep long short-term memory (LSTM) networks for ultrasonic-based distributed damage assessment in concrete. Cem Concr Res. 2022. https://doi.org/10.1016/j.cemco nres.2022.107003.
  • 47. Konsta-Gdoutos MS, Batis G, Danoglidis PA, Zacharopoulou AK, Zacharopoulou EK, Falara MG, Shah SP. Effect of CNT and CNF loading and count on the corrosion resistance, conductivity and mechanical properties of nanomodified OPC mortars. Constr Build Mater. 2017;147:48–57. https:// doi. org/ 10. 1016/j. conbu ildmat.2017.04.112.
  • 48. Peng H, Ge Y, Cai C, Zhang Y, Liu Z. Mechanical properties and microstructure of graphene oxide cement-based composites. Constr Build Mater. 2019;194:102–9. https://doi.org/10.1016/j. conbuildmat.2018.10.234.
  • 49. Jiang S, Zhou D, Zhang L, Ouyang J, Yu X, Cui X, Han B. Comparison of compressive strength and electrical resistivity of cementitious composites with different nano-and micro-fillers. Arch Civ Mech Eng. 2018;18:60–8. https:// doi. org/ 10. 1016/j. acme.2017.05.010.
  • 50. Liu J, Li Q, Xu S. Reinforcing mechanism of graphene and gra- phene oxide sheets on cement-based materials. J Mater Civ Eng. 2019;31:04019014. https:// doi. org/ 10. 1061/ (ASCE) MT. 1943- 5533.0002649.
  • 51. Suo Y, Guo R, Xia H, Yang Y, Yan F, Ma Q. Study on modifi- cation mechanism of workability and mechanical properties for graphene oxide-reinforced cement composite. Nanomater Nano- techno. 2020;10:1847980420912601. https:// doi. org/ 10. 1177/ 1847980420912601.
  • 52. Nochaiya T, Tolkidtikul P, Singjai P, Chaipanich A. Microstructure and characterizations of portland-carbon nanotubes pastes. Adv Mat Res. 2008;55:549–52. https://doi.org/10.4028/www. scientific.net/AMR.55-57.549.
  • 53. Qin W, Guodong Q, Dafu Z, Yue W, Haiyu Z. Influence of the molecular structure of a polycarboxylate superplasticiser on the dispersion of graphene oxide in cement pore solutions and cement-based composites. Constr Build Mater. 2021. https:// doi.org/10.1016/j.conbuildmat.2020.121969.
  • 54. Wang Q, Cui X, Wang J, Li S, Lv C, Dong Y. Effect of fly ash on rheological properties of graphene oxide cement paste. Constr Build Mater. 2017;138:35–44. https://doi.org/10.1016/j.conbu ildmat.2017.01.126.
  • 55. Ahmed H, Bogas JA, Guedes M, Pereira MFC. Dispersion and reinforcement efficiency of carbon nanotubes in cementitious composites. Mag Concr Res. 2019;71:408–23. https://doi.org/ 10.1680/jmacr.17.00562.
  • 56. Lv S, Ma Y, Qiu C, Sun T, Liu J, Zhou Q. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Constr Build Mater. 2013;49:121–7. https://doi.org/10.1016/j.conbuildmat.2013.08.022.
  • 57. Zhang W, Ouyang J, Ruan Y, Zheng Q, Wang J, Yu X, Han B. Effect of mix proportion and processing method on the mechanical and electrical properties of cementitious composites with nano/fiber fillers. Mater Res Express. 2018. https://doi.org/10. 1088/2053-1591/aaa60a.
  • 58. Sun H, Ling L, Ren Z, Memon SA, Xing F. Effect of graphene oxide/graphene hybrid on mechanical properties of cement mortar and mechanism investigation. Nanomaterials. 2020;10:113. https://doi.org/10.3390/nano10010113.
  • 59. Li W-W, Ji W-M, Wang Y-C, Liu Y, Shen R-X, Xing F. Investigation on the mechanical properties of a cement-based material containing carbon nanotube under drying and freeze-thaw conditions. Materials. 2015;8:8780–92. https://doi.org/10.3390/ ma8125491.
  • 60. Shang Y, Zhang D, Yang C, Liu Y, Liu Y. Effect of graphene oxide on the rheological properties of cement pastes. Constr Build Mater. 2015;96:20–8. https:// doi. org/ 10. 1016/j. conbu ildmat.2015.07.181.
  • 61. Long W-J, Wei J-J, Xing F, Khayat KH. Enhanced dynamic mechanical properties of cement paste modified with graphene oxide nanosheets and its reinforcing mechanism. Cem Concr Compos. 2018;93:127–39. https:// doi. org/ 10. 1016/j. cemco ncomp.2018.07.001.
  • 62. Mohsen MO, Taha R, Taqa AA, Shaat A. Optimum carbon nanotubes’ content for improving flexural and compressive strength of cement paste. Constr Build Mater. 2017;150:395– 403. https://doi.org/10.1016/j.conbuildmat.2017.06.020.
  • 63. Ahmed H, Bogas JA, Guedes M. Mechanical behavior and trans- port properties of cementitious composites reinforced with carbon nanotubes. J Mater Civ Eng. 2018;30:04018257. https://doi. org/10.1061/(ASCE)MT.1943-5533.0002470.
  • 64. Zhao L, Guo X, Liu Y, Zhao Y, Chen Z, Zhang Y, Guo L, Shu X, Liu J. Hydration kinetics, pore structure, 3D network calcium silicate hydrate, and mechanical behavior of graphene oxide reinforced cement composites. Constr Build Mater. 2018;190:150–63. https://doi.org/10.1016/j.conbuildmat.2018. 09.105.
  • 65. Wang Q, Wang J, Lu C-x, Liu B-w, Zhang K, Li C-Z. Influence of graphene oxide additions on the microstructure and mechanical strength of cement. New Carbon Mater. 2015. https://doi.org/10. 1016/S1872-5805(15)60194-9.
  • 66. Xu S, Liu J, Li Q. Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste. Constr Build Mater. 2015;76:16–23. https://doi.org/10.1016/j.conbuild- mat.2014.11.049.
  • 67. Zhao L, Guo X, Ge C, Li Q, Guo L, Shu X, Liu J. Investigation of the effectiveness of PC@ GO on the reinforcement for cement composites. Constr Build Mater. 2016;113:470–8. https://doi.org/ 10.1016/j.conbuildmat.2016.03.090.
  • 68. Wang B, Han Y, Pan B, Zhang T. Mechanical and morphological properties of highly dispersed carbon nanotubes reinforced cement based materials. J WUHAN UNIV TECHNOL. 2013;28:82. https://doi.org/10.1007/s11595-013-0645-1.
  • 69. Zhao L, Guo X, Ge C, Li Q, Guo L, Shu X, Liu J. Mechanical behavior and toughening mechanism of polycarboxylate super-plasticizer modified graphene oxide reinforced cement composites. Compos Part B-Eng. 2017;113:308–16. https://doi.org/10. 1016/j.compositesb.2017.01.056.
  • 70. Lv S, Ma Y, Qiu C, Zhou Q. Regulation of GO on cement hydration crystals and its toughening effect. Mag Concr Res. 2013;65:1246–54. https://doi.org/10.1680/macr.13.00190.
  • 71. Chen Z-S, Zhou X, Wang X, Guo P. Mechanical behavior of multilayer GO carbon-fiber cement composites. Constr Build Mater. 2018. https://doi.org/10.1016/j.conbuildmat.2017.10.094.
  • 72. Wang M, Wang R, Yao H, Farhan S, Zheng S, Du C. Study on the three dimensional mechanism of graphene oxide nanosheets modified cement. Constr Build Mater. 2016;126:730–9. https:// doi.org/10.1016/j.conbuildmat.2016.09.092.
  • 73. Lv S, Hu H, Hou Y, Lei Y, Sun L, Zhang J, Liu L. Investigation of the effects of polymer dispersants on dispersion of GO nanosheets in cement composites and relative microstructures/performances. Nanomaterials. 2018;8:964. https://doi.org/10.3390/nano8120964.
  • 74. Lv S, Ting S, Liu J, Zhou Q. Use of graphene oxide nanosheets to regulate the microstructure of hardened cement paste to increase its strength and toughness. CrystEngComm. 2014;16:8508–16. https://doi.org/10.1039/C4CE00684D.
  • 75. Erickson N, Mueller J, Shirkov A, Zhang H, Larroy P, Li M, Smola A. Autogluon-tabular: Robust and accurate automl for structured data. arXiv preprint arXiv:2003.06505. 2020. https:// doi.org/10.48550/arXiv.2003.06505.
  • 76. Parmanto B, Munro PW, Doyle HR. Reducing variance of com- mittee prediction with resampling techniques. CONNECT SCI. 1996;8:405–26. https://doi.org/10.1080/095400996116848.
  • 77. Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. arXiv preprint. arXiv:1705.07874v2. 2017. https:// doi.org/10.48550/arXiv.1705.07874.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9fb2e4a0-c0ba-4e27-8de5-cbf89cf12beb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.