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Abstract

Local scour around bridge piers impairs the stability of bridges’ structures. Therefore, a del-
icate estimation of the local scour depth is vital in designing the bridge piers foundations.
In this research, MATLAB software was used to train artificial neural network (ANN) mod-
els with four hundred laboratory datasets from different laboratory studies, including five pa-
rameters: pier diameter, flow depth flow velocity, critical sediment velocity, sediment particle
size, and equilibrium local scour depth. The outcomes present that the ANN model with the
Levenberg-Marquardt algorithm and 11 nodes in the single hidden layer gives an accurate
estimation better than other ANN models trained with different training algorithms based on
the regression results and mean squared error values. Besides, the ANN model accurately pro-
vides predicted local scour depth and is better than linear and nonlinear regression models.
Furthermore, sensitivity analysis shows that removing pier diameter from training parameters
diminishes the reliability of prediction.
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1. Introduction

Local scour is a natural phenomenon generated by the denudation of silty ducts’ bot-
tom and edges due to the water’s flow (Khwairakpam and Mazumdar 2009). Besides,
scour takes place in the coastal regions as a result of the waves. The procedure of
scouring mechanizations is well established. However, it is not manageable to quan-
tify the quantity of scour at the bridge pier because of the complexity of the cyclic
nature of the event and the fact that geometry of the bridge, morphology, the channel
of the river, and the hydrologic process is different at each bridge. Scour at bridge
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piers is generally the outcome of the combined influences of three separate scour pro-
cedures (local, contraction, and general scour at abutments and piers) that could occur
either at the specific moment or independently. As shown in Figure 1, researchers have
ordered total scour into the general scour and localized scour. The localized scour in-
cludes constriction scour, which is the decrease in the cross-sectional area of the flow
of water due to the presence of piers and abutments; leading to an increase in the flow
velocity, as a consequence, increase erosion due to flow, and hence reduce the bed
elevation across the area concerned by the constriction.

Total scour
I
I |
Localized
General scour
scour
Long-term Short-term Constriction Local
general scour| |general scour scour ocal scour
Clear-water Live-bed Clear-water Live-bed
scour scour scour scour

Fig. 1. Scour classification (Cheremisinoff et al 1987)

Another type of localized scour is the local scour, which is directly influenced by
a pier or abutment of the bridge that interrupts water flow and combines live bed scour
and clear water scour situations. The principal factor distinguishing between the live
bed scour and clear water conditions is that the mean velocity (V m/s) of the flow
upstream of the bridge is less or more significant than the scour-critical velocity (V
m/s) needed to relocate the bed material. Therefore, the clear water scour condition
happens in V < Vs. The bed material upstream of the bridge is at ease, referred to as
the clearwater condition, because the approach flow does not sustain sediment, while
live-bed scour does not occur when the V > V. Additionally, the equilibrium scour
depth is accomplished when the material is carried into the scour hole at the same
rate at which it is transported out. In the clear water scour condition, the depth of the
scour hole extends to grow till equilibrium is reached. Hence, it occurs when the com-
bination of the temporary mean bed shear stress and the turbulent near the bed can no
longer eliminate the bed substance from the scour hole at the pier. In live-bed scour,
the equilibrium scour depth is reached when the time that sediment enters the scour
hole is equivalent to the time that is leaving the hole. Therefore, the depth of scour is
an essential parameter for determining the minor depth of foundations as it minimizes
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the lateral capacity of the foundation. For this purpose, inclusive laboratory researches
were carried to understand the complex scour process and establish a method of pre-
dicting scour depth for various pier locations. However, no generic description has
been revealed that can be used in all pier cases to determine the quantity of scour
that will happen. Numerous empirical formulae were presented to predict equilib-
rium scour depth at bridge piers, including Laursen and Toch (1956), Shen (1971),
Hancu (1971), Breuser et al (1977), Melville and Sutherland (1988). Besides, improv-
ing soft computing techniques supported researchers in utilizing advanced methods
to estimate the scour depth around various structures. Jeng et al (2005) employed an
artificial neural network to predict equilibrium scour depth and time-dependent scour
depth. They developed two Bayesian models with single hidden layers and multiple
hidden layers, and they trained ANN models with the combination of dimensional
and dimensionless parameters. They noted that the Bayesian neural network model
provides more precise scour depth predictions than the current methods. The sensi-
tivity analysis revealed that pier diameter has the most significant influence on equilib-
rium scour depth. Additionally, predictions based on the original (dimensional) scour
data were more accurate than those based on dimensionless data. Bateni et al (2007)
applied ANN models with multilayer perceptron (MLP/BP), radial basis function
(RBF/OLS), and adaptive neuro-fuzzy inference system (ANFIS) in the calculation
of equilibrium and time-dependent scour depth around piers. The research comprised
the laboratory data to train and verify the networks, and they trained ANN models
with dimensional and non-dimensional parameters. They observed that the neural net-
works and neuro-fuzzy approaches predict scour depth much more precisely than the
present methods, especially multilayer perception with one hidden layer and raw data.
They also pointed out that the pier diameter has the most influence on equilibrium
scour depth. Guven et al (2012) developed gene-expression programming (GEP) and
a multilayer perception model with one hidden layer and a backpropagation algorithm
to predict the scour depth around a circular pile due to tides. The models are trained
with dimensional and non-dimensional parameters. They concluded that the GEP pre-
dicted the scour depth around the pile with better precision than MLP, linear regres-
sion, and nonlinear regression models. Sarshari and Mullhaupt (2015) used ANN and
empirical methods to predict equilibrium scour depth at bridge piers. They applied a
multilayer neural network and the popular backpropagation algorithms in MATLAB,
and they trained ANN models with dimensional parameters. They noticed that the
neural network prediction results are more precise than the outcomes gained from
the empirical models. The training algorithm Levenberg-Marquardt BPG (trainlm)
presents more desirable outcomes than other algorithms in MATLAB. Khassaf and
Abdulwhab (2016) employed ANN with feed-forward backpropagation algorithms
in MATLAB to estimate the maximum local scour depth at cylindrical bridge piers.
They observed that ANN gives better outcomes than empirical formulas, particularly
the ANN model with Levenberg-Marquardt BPG (trainlm), which includes a single
hidden layer and two hidden layers. Besides, the pier diameter has the most signif-
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icant impact on predicting local scour depth based on sensitivity outcomes. Amini
et al (2020) used an ANN model with a single hidden layer and three neurons to
predict the scour depth at the composite piers of the bridges. They found that the
proposed ANN model provides better results than the empirical methods, and the pile
cap location and the flow depth have the most effects on the scour depth. However,
the literature on applying artificial neural networks to estimate the scour depth at the
bridge’s abutment has not been reported over an extensive range. This study aims to
utilize Artificial Neural Networks trained with laboratory data and various backprop-
agation algorithms in MATLAB for predicting equilibrium local scour depth around
bridge piers. Besides, examining the most critical factors that affect the prediction
and performance of modeling with dimensional and non-dimensional variables and
comparing the outcomes with linear and nonlinear regression models.

2. Parameters Governing Scour

The depth of equilibrium local scour around the bridge piers is influenced by flow,
sediment properties, and the geometry of the pier (Melville and Coleman 2000), as
shown in the following functional relationship:

dse = f [ﬂow (o, 1,V y,9,v) ,sediment (dsg, 0y, ps, V),
9 (1)
pier geometry (b, @,p)],

where d,, is the equilibrium scour depth, ¢ and p are dynamic viscosity of water (m?/s)
and fluid density (kg/m?), respectively, y and V are flow depth (m) and mean velocity
(m/s?), respectively, g is the gravitational acceleration, y is the correction factor for
bed form, o, and ds are standard deviation and median of the particle size distribution
(mm), respectively, V¢ is the critical mean velocity for entrainment of bed sediment
(m/s), py is the sediment particle density (kg/m?), b is the pier width or pier diameter,
and S and « are correction factors for flow angle of attack and pier shape. However,
the number of parameters in (Eq. 1) can be reduced, as y and o, can be ignored and
subscript in dsg can be removed from Equation 1 in the case of uniform sediment and
abandoned influence of bedform. Moreover, when the angle of flow attack is assumed
to be zero, § and « parameters could be taken away. Furthermore, p; and p can be
removed due to constant values of these parameters, and the meager effectiveness of
viscous, (Eq. 1) could be written as follows (Choi et al 2017):

dse:fl (V’.I/’d’VCab)~ (2)
The dimensional analysis of Equation 2 leads to (Eq. 3) (Choi et al 2017), as
shown:
dse V yd
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3. Artificial Neural Network

An artificial neural network (ANN) is a comprehensive parallel-distributed informa-
tion-processing framework that has a valid task feature similar to the brain’s biological
neural network systems in the human being (Haykin 1999), which is provided by Mc-
Culloch and Pitts (1943). The strength of the artificial neural network in distinguishing
a relationship from a presented method makes it advantageous in resolving complex
wide-ranging problems such as modeling, classification, and nonlinear problems. The
characterizes of an ANN are known by determining the connection weight, the struc-
ture of the neural network, and activation function. The principles and components of
ANN modeling and training steps are exceedingly introduced in the published works
of Haykin (1999); Dolling and Varas (2002); Azmatullah et al (2005). Commonly, an
artificial neural network contains three layers: input layer, hidden layer, and output
layer, and each of these layers acting as a separate computational part, as shown in
Figure 2.

Input Layer (i) Hidden Layer (§ ) QOutput Layer (k)

Fig. 2. Architecture of an ANN model (Choi and Cheong 2006)

The number of neurons in the hidden layer is a critical parameter determining
ANN models’ accuracy. Fletcher and Goss (1993) recommended that the suitable
number of neurons in the hidden layer range from (2n1/2 + m) to (2n + 1), where n
is the number of input neurons and m is the number of output neurons. Commonly,
the number of hidden layer neurons is decided by a trial-and-error process. Finally,
the model with the most precise results will be applied, which contains the most rel-
evant number of neurons in the hidden layers. In this study, eight ANN feed-forward
neural network models with backpropagation algorithms were established to predict
the equilibrium local scour depth around bridge piers using a deep learning toolbox
in MATLAB. Besides, these ANN models included a single hidden layer with 2 — 12
nodes to figure out the appropriate number of nodes in the hidden layer. Table 1 shows
the backpropagation algorithms used in the training ANN models in MATLAB and
the parameters of each ANN model.
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Table 1. ANN models

Model name | Function name Algorithm Variables
DM-1 TRAINLM Levenberg-Marquardt backpropagation | ds,b,V,y,V.,d
DM-2 TRAINRP Resilient backpropagation dse,b,V,y,V.,d
DM-3 TRAINGDA Gradient descent With‘ adaptive [r dy,b,V,y, Ve, d

backpropagation
DM-4 TRAINCGF Fletcher-Powell conjugate gradient dy,b,V,y, Ve d
backpropagation
DM-5 TRAINCGP Polak-Ribiere conjugz.tte gradient dy,b,V,y,Ve,d
backpropagation
DM-6 TRAINCGB Powell-Beale conjugqte gradient dy,b,V,y,Ve,d
backpropagation
DM-7 TRAINBFG BFGS quasi-Newton backpropagation | d,b,V,y,V.,d
se V d
NDM-1 TRAINLM Levenberg-Marquardt backpropagation Te, v %, 3

The log-sigmoid transfer function (LOGSIG) was utilized in the hidden layer that
outfits a graded nonlinear response and supports the ANN to transact with any non-
linear cases. The linear transfer function (PURLIN) was utilized as a transfer function
between the hidden and output layer (Prasad et al 2012):

1
LOGSIG = f(n) = T+ oxp(on)’ 4)
PURLIN = f(n) = n, &)

where f(n) is the output of the transfer function, and » is the weighted sum of in-
puts. Moreover, the evaluation of the accuracy of ANN models in the prediction was
assessed according to regression value (R) (best value = 1) and mean squared error
(MSE) (best value = 0) (Hagan et al 2002, Hagan et al 2009).

§ (1 -7)(0x-0)

k=1

k= n— 1878, ©)
1 < —
ST:Jn—lg(TK_T)’ @)
1 n
ST:JH_II;(OK—O), (8)
_ 1<
T=-) Tk, )
n
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_ 1<
0=-> 0k, (10)
n k=1
1 n
MSE = = »" (Tx - Ok)?, (11)
n
k=1

where n is the number of data, O is the Iletwork outcome, Tk is the actual target, o
is the mean value of the network output, T is the mean value of the targets.

4. Dataset

ANN models were trained with 400 laboratory measurements of the pier scour dataset.
These data were taken from the laboratory data available in the PSDb-2014, consist-
ing of 569 measures taken from 17 previous investigations collected by Sheppard et al
(2011), Benedict and Caldwell (2014). Throughout a screening method that included
data review and statistical study, Sheppard et al (2011) recognized 441 of the lab-
oratory measurements that approximated equilibrium scour depths and applied that
data in their research of pier scour. Some of the laboratory measurements compiled
by Sheppard et al (2011) are of historical interest. In particular, various of the data
collected by Chabert and Engeldinger (1956) and Shen et al (1969) was employed
to improve the original Hydraulic Engineering Circular No. 18 (HEC-18) pier-scour
equation (Richardson et al 1991). The data consist of variables which are pier width
(b), flow velocity (V), flow depth (y), the sediment critical mean velocity (V¢), the
particle diameter (d), and equilibrium scour depth (dse). Table 2 shows the sources
of data used in the training ANN models.

Table 2. Dataset

Source of dataset Number of datasets
Chabert and Engeldinger (1956) 93
Chee (1982) 37
Chiew (1984) 101
Coleman (unpublished) 6
Dey et al (1995) 18
Ettema (1980) 97
Ettema et al (2006) 6
Ettema (1976) 19
Graf (1995) 3
Jain and Fischer (1979) 20

Table 3 presents the range of dimensional variables, while Table 4 shows the range
of non-dimensional variables.

Besides, all variables were normalized according to the min-max normalization
method to increase prediction efficiency (Dogan et al 2008).
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Table 3. Dimensional dataset

Dimensional variable Range
V (fi/s?) 0.54-5.28
y (ft) 0.066-3.281
d (mm) 0.24-7.8
V. (ft/s) 0.73-4.81
b (ft) 0.095-2.5
d, (ft) 0.049-1.497

Table 4. Dimensionless dataset

Dimensionless variable Range

d./b 0-3.084

VIVe 0.445-4.690
y/b 0.052-20.947

d/b 0.304-82.978

X - Xmin
Xm)rm =<5 v (12)
Xmax - Xmin

where X, is the normalized value of a variable, X is any value of the dataset, Xy, is
the maximum value of the whole dataset, and X,,;, is the minimum value of the whole
dataset. The dataset was divided randomly into 70% for training, 15% for validation,
and 15% for test.

5. Results and Discussion

ANN models with various backpropagation algorithms and 2—12 nodes in the single
hidden layers were run in MATLAB using a deep learning toolbox. Each ANN model
provided different results, and the performance of ANN models was assessed accord-
ing to the regression value (R) and mean squared error (MSE) of the training and
test data set. The ANN model DM-1 with training algorithm Levenberg-Marquardt
backpropagation (TRAINLM) and 11 nodes in the hidden layer showed the best re-
sults among ANN models. Moreover, model DM-1 performance is better than ANN
model NDM-1, trained with the same training algorithm, the number of nodes in
the hidden layer (11 nodes), and dimensional and non-dimensional parameters, as
shown in Table 5. Figure 3 — Figure 9 demonstrates the performance of ANN models.
Besides, ANN model DM-1 provided better predicted local scour depth results than
ANN model NDM-1, linear regression model, and nonlinear regression model, as
shown in Figure 10 — Figure 12.

6. Sensitivity Analysis

Artificial neural networks could be used to assess the significance of dimensional and
non-dimensional input variables in estimating the local scour depth. For this purpose,
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Table 5. Performance of ANN model DM-1 and NDM-1

Models .R. N.IS.E R MSE | Nodes Function
training | training test test name
DM-1 0.9585 | 0.0025 | 0.9290 | 0.0032 11 TRAINLM
NDM-1 | 0.7023 0.009 0.7128 | 0.0088 11 TRAINLM
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Fig. 12. Predicted equilibrium local scour depth obtained from nonlinear regression model

additional 8 ANN models were established, and each model contained one missed
input parameter. Table 6 and Table 7 show the importance of each input parameter
in the modeling. It is clear from the results that the pier width (), as shown in Table
6, has the most impact on prediction accuracy more than other input parameters. In
contrast, the removal of each non-dimensional parameter shows the same effect on

Predicted Scour Depth (ft)
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Table 6. Sensitivity analysis of dimensional parameters

Model | R training | MSE training | Rtest | MSEtest | Nodes Removed
Parameter
DM 0.9585 0.0025 0.9290 0.0032 11
DMIl-a 0.9225 0.0028 0.9177 0.0044 11 Ve
DM1-b 0.939 0.0027 0.9078 0.005 11 Vv
DM1-c 0.5619 0.017 0.415 0.0212 11 b
DMI1-d 0.9453 0.0026 0.9284 0.0034 11 y
DMIl-e 0.9411 0.0025 0.9267 0.004 11 d
Table 7. Sensitivity analysis of non-dimensional parameters
Model R training | MSE training | Rtest | MSE test | Nodes Removed
Parameter
NDM 0.7023 0.009 0.7128 0.0088 11
NDM-1a 0.4994 0.015 0.4549 0.011 11 VZ 7,
NDM-1b 0.5286 0.014 0.3519 0.02 11 VK -,
NDM-1c 0.5578 0.136 0.4858 0.018 11 vlb’ 2,
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7. Conclusions

Artificial neural network models demonstrated a reliable result in predicting equi-
librium local scour depth around bridge piers. ANN model DM-1 trained with
Levenberg-Marquardt backpropagation (trainlm) algorithm and 11 neurons in the sin-
gle hidden layer has provided a precise estimation of local scour depth compared to
ANN models in this research. Also, the trial-and-error process was used in deter-
mining the appropriate number of nodes in the hidden layers. ANN model DM-1
demonstrated better performance than linear and nonlinear regression models. ANN
models DM-1, DM-2, and DM-3 provided good performance with 11 nodes in the
hidden layer. ANN model DM-4 provided considerable results with 6 and 11 nodes
in the hidden layer, while ANN models DM-5 and DM-6 showed promising results
with 6 and 9 nodes in the hidden layer, respectively. ANN model DM-7 presented
good outcomes with 12 nodes in the hidden layer. It is clear from the results that the
small number of nodes in the single hidden layer provides good performance. The
sensitivity analysis showed that the availability of the pier width or pier diameter is
significant to predicting the equilibrium local scour depth at bridge piers and is more
critical than other parameters such as flow depth, flow velocity, and sediment particle
size.
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