Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The occurrence of climate change has resulted in extremely dry climatic conditions, which led to a significant impact on crop growth and productivity. The rhizosphere of the endemic argan forest could be a baring ground for naturally unexplored plant growth-promoting rhizobacteria (PGPR). A greenhouse experiment was conducted to evaluate the effect on alfalfa plants under drought conditions of four selected rhizobacteria, including two actinobacteria, in combination with two naturally endosymbiont Ensifer meliloti strains (RhOL). A completely randomized design was used with water stress as the main factor consisting of two regimes: (1) well-watered plants (75% field capacity (FC)) and (2) water-stressed plants (35% FC), and PGPR inoculation as a second factor consisting of four inoculation treatments: control, consortia (LBA8 + LBA19 + RhOL6 + RhOL8 strains), (3) consortia 2 (LB4 + LBP2 + RhOL6 + RhOL8 strains), and (4) consortia 3 (LBA8 + LBA19 + LB4 + LBP2 + RhOL6 + RhOL8 strains). Inoculated alfalfa plants showed tolerance to drought stress by increased production of total chlorophyll and osmolytes, including proteins and sugars, under drought stress. The bacterial in-oculation led to a lower H2O2 content in alfalfa leaves and neutralized the reactive oxygen species. These PGPR strains appeared to be important tools capable of being developed into bioinoculants to effectively improve drought tolerance in plants in a sustainable agriculture strategy.
Czasopismo
Rocznik
Tom
Strony
111--132
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
- Laboratory of Plant Biotechnology, Department of Biology, Faculty of Sciences, Ibn Zohr University (UIZ), Agadir, Morocco
- Cadi Ayyad University, Faculty of Sciences, Semlalia, Laboratory of Water Sciences, Microbial Biotechnologies, and Natural Resources Sustainability (AQUABIOTECH), Unit of Microbial Biotechnologies, Agrosciences and Environment (BIOMAGE)-CNRST Labeled Research Unit No. 4, Marrakech, 40000, Morocco
autor
- Cadi Ayyad University, Faculty of Sciences, Semlalia, Laboratory of Water Sciences, Microbial Biotechnologies, and Natural Resources Sustainability (AQUABIOTECH), Unit of Microbial Biotechnologies, Agrosciences and Environment (BIOMAGE)-CNRST Labeled Research Unit No. 4, Marrakech, 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (Agrobioval), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
autor
- Cadi Ayyad University, Faculty of Sciences, Semlalia, Laboratory of Water Sciences, Microbial Biotechnologies, and Natural Resources Sustainability (AQUABIOTECH), Unit of Microbial Biotechnologies, Agrosciences and Environment (BIOMAGE)-CNRST Labeled Research Unit No. 4, Marrakech, 40000, Morocco
autor
- Cadi Ayyad University, Faculty of Sciences, Semlalia, Laboratory of Water Sciences, Microbial Biotechnologies, and Natural Resources Sustainability (AQUABIOTECH), Unit of Microbial Biotechnologies, Agrosciences and Environment (BIOMAGE)-CNRST Labeled Research Unit No. 4, Marrakech, 40000, Morocco
autor
- Cadi Ayyad University, Faculty of Sciences, Semlalia, Laboratory of Water Sciences, Microbial Biotechnologies, and Natural Resources Sustainability (AQUABIOTECH), Unit of Microbial Biotechnologies, Agrosciences and Environment (BIOMAGE)-CNRST Labeled Research Unit No. 4, Marrakech, 40000, Morocco
autor
- Laboratory of Plant Biotechnology, Department of Biology, Faculty of Sciences, Ibn Zohr University (UIZ), Agadir, Morocco
autor
- Laboratory of Biology, Ecology and Health, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco.
autor
- Laboratory of Plant Biotechnology, Department of Biology, Faculty of Sciences, Ibn Zohr University (UIZ), Agadir, Morocco
autor
- Cadi Ayyad University, Faculty of Sciences, Semlalia, Laboratory of Water Sciences, Microbial Biotechnologies, and Natural Resources Sustainability (AQUABIOTECH), Unit of Microbial Biotechnologies, Agrosciences and Environment (BIOMAGE)-CNRST Labeled Research Unit No. 4, Marrakech, 40000, Morocco
- AgroBiosciences program, College for Sustainable Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
Bibliografia
- [1] DOLAN F., LAMONTAGNE J., LINK R., HEJAZI M., REED P., EDMONDS J., Evaluating the economic impact of water scarcity in a changing world, Nat. Commun., 2021, 12 (1), 1–10. DOI: 10.1038/s41467-021 -22194-0.
- [2] CHANDRA P., WUNNAVA A., VERMA P., CHANDRA A., SHARMA R.K., Strategies to mitigate the adverse effect of drought stress on crop plants – influences of soil bacteria: a review, Pedosph., 2021, 31, 496–509. DOI: 10.1016/S1002-0160 (20)60092-3.
- [3] XIE X., HE Z., CHEN N., TANG Z., WANG Q., CAI Y., The roles of environmental factors in regulation of oxidative stress in plant, Biomed. Res. Int., 2019, 9732325. DOI: 10.1155/2019/9732325.
- [4] SLIMANI A., RAKLAMI A., OUFDOU K., MEDDICH A., Isolation and characterization of PGPR and their potential for drought alleviation in barley plants, Ges. Pflanz., 2022, 75 (3), 377–391. DOI: 10.1007 /s10343-022-00709-z.
- [5] SATI D., PANDE V., PANDEY S.C., SAMANT M., Recent advances in PGPR and molecular mechanisms involved in drought stress resistance, J. Soil Sci. Plant Nutr., 2023, 23, 106–124. DOI: 10.1007/s42729-021 -00724-5.
- [6] SLIMANI A., OUFDOU K., MEDDICH A., Intercropping with alfalfa and co-inoculation of AMF and PGPR improve growth, yield, grain bioactive quality, and soil fertility of barley, Arch. Agron. Soil Sci., 2023, 69 (15), 3469–3483. DOI: 10.1080/03650340.2023.2242692.
- [7] POVEDA J., GONZÁLEZ-ANDRÉS F., Bacillus as a source of phytohormones for use in agriculture, Appl. Microbiol. Biotechn., 2021, 105, 8629–8645. DOI: 10.1007/s00253-021-11492-8.
- [8] GOWTHAM H.G., SINGH S.B., SHILPA N., AIYAZ M., NATARAJ K., UDAYASHANKAR A.C., AMRUTHESH K.N., MURALI M., POCZAI P., GAFUR A., ALMALKI W.H., SAYYED R.Z., Insight into recent progress and perspectives in improvement of antioxidant machinery upon PGPR augmentation in plants under drought stress. A review, Antiox., 2022, 11, 1763. DOI: 10.3390/antiox11091763.
- [9] MECHQOQ H., EL YAAGOUBI M., EL HAMDAOUI A., MOMCHILOVA S., GUEDES DA SILVA ALMEIDA J.R., MSANDA F., EL AOUAD N., Ethnobotany, phytochemistry and biological properties of Argan tree (Argania spinosa (L.) skeels) (Sapotaceae). A review, J. Ethnopharmacol., 2021, 281, 114528. DOI: 10.1016 /j.jep.2021.114528.
- [10] CHAKHCHAR A., HAWORTH M., EL MODAFAR C., LAUTERI M., MATTIONI C., WAHBI S., CENTRITTO M., An assessment of genetic diversity and drought tolerance in argan tree (Argania spinosa) populations: potential for the development of improved drought tolerance, Front. Plant Sci., 2022, 8, 276. DOI: 10.3389/fpls.2017.00276.
- [11] BAHIR M., OUHAMDOUCH S., OUAZAR D., An assessment of the changes in the behaviour of the ground-water resources in arid environment with global warming in Morocco, Ground. Sust. Dev., 2021, 12, 100541. DOI: 10.1016/j.gsd.2020.100541.
- [12] MAPELLI F., RIVA V., VERGANI L., CHOUKRALLAH R., BORIN S., Unveiling the microbiota diversity of the xerophyte Argania spinosa L. skeels root system and residuesphere, Microb. Ecol., 2020, 80, 822–836. DOI: 10.1007/s00248-020-01543-4.
- [13] NAUTIYAL C.S., An efficient microbiological growth medium for screening phosphate solubilizing microorganisms, FEMS Microb. Lett., 1999, 170, 265–270. DOI: 10.1111/j.1574-6968.1999.tb13383.x.
- [14] RAKLAMI A., QUINTAS-NUNES F., NASCIMENTO F.X., JEMO M., OUFDOU K., SYED A., BAHKALI A.H., VERMA M., NAFIS A., Assessing the growth-promoting traits of actinobacteria spp. isolated from Cleome africana: Implications on growth and root enhancement of Medicago sativa, J. King Saud. Univ. Sci., 2023, 35, 102722. DOI: 10.1016/j.jksus.2023.102722.
- [15] RAKLAMI A., BABALOLA O.O., JEMO M., NAFIS A., Unlocking the plant growth promoting potential of yeast spp.: Exploring species from the Moroccan extremophilic environment for enhanced plant growth and sus-tainable farming, FEMS Microbiol. Lett., 2024, 371, fnae015. DOI: 10.1093/femsle/fnae015.
- [16] OLSEN S., SOMMERS L.E., Phosphorus, [In:] A.L. Page et al. (Eds.), Methods of soil analysis: Part 2. Chemical and microbiological properties of phosphorus, Agronomy Monographs 9, 2nd Ed., American Society of Agronomy: Soil Science Society of America, Madison 1982, 403–430.
- [17] BECHTAOUI N., EL ALAOUI A., RAKLAMI A., BENIDIRE L., TAHIRI A., OUFDOU K., Impact of intercrop-ping and co-inoculation with strains of plant growth-promoting rhizobacteria on phosphorus and nitrogen concentrations and yield of durum wheat (Triticum durum) and faba bean (Vicia faba), Crop Past. Sci., 2019, 70 (8), 649–658. DOI: 10.1071/CP19067.
- [18] SCHWYN B., NEILANDS J.B., Universal chemical assay for the detection and determination of siderophores, Anal. Biochem., 1987, 8 (7), 90612–90619. DOI: 10.1016/0003-2697.
- [19] LORCK H., Production of hydrocyanic acid by bacteria, Physiol. Plant, 1948, 1, 142–146. DOI: 10.1111 /j.1399-3054.1948. tb07118.x.
- [20] JIMTHA J.C., SMITHA P.V., ANISHA C., DEEPTHI T., MEEKHA G., RADHAKRISHNAN E.K., GAYATRI G.P., REMAKANTHAN A., Isolation of endophytic bacteria from embryogenic suspension culture of banana and assessment of their plant growth promoting properties, Plant Cell Tiss. Org. Cult., 2014, 118, 57–66. DOI: 10.1007/s11240-014-0461-0.
- [21] ARNON D.I., Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris, Plant Physiol., 1949, 24, 1–15. DOI: 10.1104/pp.24.1.1.
- [22] DUBOIS M., GILLES K.A., HAMILTON J.K., REBERS P.T., SMITH F., Colorimetric method for determination of sugars and related substances, Anal. Chem., 1956, 28, 350–356. DOI: 10.1021/ac60111a017.
- [23] BRADFORD M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, 72, 248–254. DOI: 10.1016/0003 -2697(76)90527-3.
- [24] AEBI H., Catalase in vitro, Methods Enzymol., 1984, 105, 121–126. DOI: 10.1016/S0076-6879(84) 05016-3.
- [25] BEYER W.F., FRIDOVICH I., Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions, Anal. Biochem., 1987, 161, 559–566. DOI: 10.1016/0003-2697 (87)90489-1.
- [26] VELIKOVA V., YORDANOV I., EDREVA A., Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines, Plant Sci., 2000, 151, 59–66. DOI: 10.1016/S0168 -9452 (99)00197-1.
- [27] RIVA V., Plant associated bacteria: A sustainable resource to minimize water footprint in agriculture, PhD Thesis, University of Milan, Italy, 2019, https://air.unimi.it/retrieve/dfa8b9a0-0219-748b-e053 -3a05fe0a3a96/phd_unimi_R11646.pdf
- [28] TANDON A., FATIMA T., SHUKLA D., TRIPATHI P., SRIVASTAVA S., SINGH P.C., Phosphate solubilization by Trichoderma koningiopsis (NBRI-PR5) under abiotic stress conditions, J. King Saud. Univ. Sci., 2020, 32, 1, 791–798. DOI: 10.1016//j.jksus.2019.02.001
- [29] ETESAMI H., HOSSEINI H., ALIKHANI H., MOHAMMADI L., Bacterial biosynthesis of 1-aminocyclopro-pane-1-carboxylate (ACC) deaminase and indole-3-acetic acid (IAA) as endophytic preferential selection traits by rice plant seedlings, J. Plant Growth Regul., 2014, 33, 654–670.
- DOI: 10.1007/s00344-014-9415-3.
- [30] CHUKWUNEME C.F., BABALOLA O.O., KUTU F.R., OJUEDERIE O.B., Characterization of actinomycetes isolates for plant growth promoting traits and their effects on drought tolerance in maize, J. Plant Interact., 2020, 15, 93–105. DOI: 10.1080/17429145.2020.1752833.
- [31] VACHERON J., DESBROSSES G., RENOUD S., PADILLA R., WALKER V., MULLER D., PRIGENT-COMBARET C., Differential contribution of plant-beneficial functions from Pseudomonas kilonensis F113 to root system architecture alterations in Arabidopsis thaliana and Zea mays, Mol. Plant Microb. Int., 2018, 31, 212–223. DOI: 10.1094/MPMI-07-17-0185-R.
- [32] KAUR H., KOHLI S.K., KHANNA K., BHARDWAJ R., Scrutinizing the impact of water deficit in plants: Transcriptional regulation, signalling, photosynthetic efficacy, and management, Physiol. Plant., 2021, 172, 935–962. DOI: 10.1111/ppl.13389.
- [33] ASGHARI B., KHADEMIAN R., SEDAGHATI B., Plant growth promoting rhizobacteria (PGPR) confer drought resistance and stimulate biosynthesis of secondary metabolites in pennyroyal (Mentha pulegium L.) under water shortage condition, Sci. Hortic., 2020, 263, 109132. DOI: 10.1016/j.scienta.2019.109132.
- [34] KUDOYAROVA G., ARKHIPOVA T., KORSHUNOVA T., BAKAEVA M., LOGINOV O., DODD I.C., Phytohormone mediation of interactions between plants and non-symbiotic growth promoting bacteria under edaphic stresses, Front. Plant Sci., 2019, 10, 1368. DOI: 10.3389/fpls.2019.01368.
- [35] ABDELAAL K., ALKAHTANI M., ATTIA K., HAFEZ Y., KIRÁLY L., KÜNSTLER A., The role of plant growth-promoting bacteria in alleviating the adverse effects of drought on plants, Biology, 2021, 10, 520. DOI: 10.3390/biology10060520.
- [36] IGHODARO O.M., AKINLOYE O.A., First line defence antioxidants-superoxide dismutase (SOD), cata-lase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid, Alexandria J. Med., 2018, 54, 287–293. DOI: 10.1016/j.ajme.2017.09.001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9fadeb00-aaf5-4ab5-86bb-e8464769bd56
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.