Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the contemporary research community, hybrid composites with improved performance are emerging as a trend, overcoming the drawbacks of conventional composites and satisfying needs in tribological applications. In this work, Al-MHA-Si3N4 hybrid composites reinforced with various weight percentages of mustard husk ash (MHA), 0, 2.5, 5, 7.5% and 10%, produced by powder metallurgy techniques at 300, 400, 500, 600 and 700 MPa compaction pressure were analysed. The microstructural characterization of the metal matrix hybrid composites, followed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) investigations show the homogeneous distribution of the reinforcement in the metal matrix. A sliding wear study without lubrication was performed on a pin-on-disc wear testing machine under the following sliding conditions: sliding velocity (SV) of 1.5 m/s, sliding distance (SD) of 300 m and applied loads of 25 N and 35 N. The deformation of the worn surfaces was also investigated. It was found that the tribological characteristics of the composites were enhanced by increasing the weight percentage of MHA and the compaction pressure.
Czasopismo
Rocznik
Tom
Strony
37--43
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- Mechanical Engineering Department, Jamia Millia Islamia, New Delhi, India
autor
- Mechanical Engineering Department, Jamia Millia Islamia, New Delhi, India
autor
- Mechanical Engineering Department, Jamia Millia Islamia, New Delhi, India
Bibliografia
- [1] Sharma P., Sharma S, Khanduja D., A study on microstructure of aluminium matrix composites, Journal of Asian Ceramic Societies 2015, Sep, 1, 3(3), 240-244.
- [2] Baradeswaran A, Perumal AE. Study on mechanical and wear properties of Al. 7075/Al2O3/graphite hybrid composites, Composites Part B: Engineering 2014, Jan, 1, 56, 464-471.
- [3] Johnson T., History of Composites. The Evolution of Lightweight Composite Materials, 2014.
- [4] Bansal S., Mago J., Gupta D., Jain V., Microwave cladding of NiCrSiC-5Al2O3 on austenitic stainless steel to improve cavitation erosion resistance, Surface Topography, Metrology and Properties 2021, Sep, 2, 9(3), 035036.
- [5] Goyal D., Mittal S.K., Choudhary A., Dang R.K., Graphene: A two dimensional super material for sensor applications, Materials Today, Proceedings 2021, Jan 1, 43, 203-208.
- [6] Mago J., Bansal S., Gupta D., Jain V., Investigation of microwave processing parameters on development of Ni-40Cr3C2 composite clad and their characterization. Metallurgical and Materials Transactions A. 2020, Aug, 51(8), 4288-4300.
- [7] Ravindran P., Manisekar K., Narayanasamy P., Selvakumar N., Narayanasamy R., Application of factorial techniques to study the wear of Al hybrid composites with graphite addition, Materials & Design 2012, Aug 1, 39, 42-54.
- [8] Kalaiselvan K., Murugan N., Parameswaran S., Production and characterization of AA6061-B4C stir cast composite, Materials & Design 2011, Aug 1, 32(7), 4004-4009.
- [9] Rajaravi C., Gobalakrishnan B, Lakshminarayanan P.R., Effect of pouring temperature on cast Al/SiCp and Al/TiB2 metal matrix composites, Journal of the Mechanical Behavior of Materials 2019, Jan, 1, 28(1), 162-168.
- [10] Auradi V., Rajesh G.L., Kori S.A., Preparation and evaluation of mechanical properties of 6061Al-B4Cp composites produced via two-stage melt stirring, Materials and Manufacturing Processes 2014, Feb, 1, 29(2), 194-200.
- [11] Basavarajappa S., Chandramohan G., Davim J.P., Application of Taguchi techniques to study dry sliding wear behaviour of metal matrix composites, Materials & design 2007, Jan, 1, 28(4), 1393-1398.
- [12] Suresha S., Sridhara B.K., Effect of silicon carbide particulates on wear resistance of graphitic aluminium matrix composites, Materials & Design 2010, Oct, 1, 31(9), 4470-4477.
- [13] Venkata Siva S.B., Sahoo K.L., Ganguly R.I., Dash R.R., Singh S.K., Satpathy B.K., Srinivasarao G., Preparation of aluminum metal matrix composite with novel in situ ceramic composite particulates, developed from waste colliery shale material, Metallurgical and Materials Transactions B. 2013, Aug, 44(4), 800-808.
- [14] Mahanta S., Chandrasekaran M., Samanta S., Arunachalam R., Multi-response ANN modelling and analysis on sliding wear behavior of Al7075/B4C/fly ash hybrid nanocomposites, Materials Research Express 2019, Jun, 19, 6(8), 0850h4.
- [15] Khedkar J., Negulescu I., Meletis E.I., Sliding wear behavior of PTFE composites, Wear. 2002, Mar, 1, 252(5-6), 361-369.
- [16] Prasad S.V., Asthana R., Aluminum metal-matrix composites for automotive applications: tribological considerations. Tribology Letters 2004, Oct, 17(3), 445-453.
- [17] Rao R.G., Ghosh M., Ganguly R.I., Sahoo K.L., Mechanical properties and age hardening response of Al6061 alloy based composites reinforced with fly ash, Materials Science and Engineering A. 2020, Jan, 20, 772, 138823.
- [18] Arunachalam S., Chelladurai S.J., Optimization of dry sliding wear parameters of AA336 aluminum alloy‐boron carbide and fly ash reinforced hybrid composites by stir casting process. Materialwissenschaft und Werkstofftechnik 2020, Feb, 51(2), 189-198.
- [19] Bodunrin M.O., Oladijo O.P., Daramola O.O., Alaneme K.K., Maledi N.B., Porosity measurement and wear performance of aluminium hybrid composites reinforced with silica sand and bamboo leaf ash, Annals of the Faculty of Engineering Hunedoara-International Journal of Engineering 2016, Jan, 1, 14(1).
- [20] Peter P.I., Adekunle A.A., A review of ceramic/bio-based hybrid reinforced aluminium matrix composites, Cogent Engineering 2020, Jan, 1, 7(1), 1727167.
- [21] Loh Y.R., Sujan D., Rahman M.E., Das C.A., Sugarcane bagasse – The future composite material: A literature review, Resources, Conservation and Recycling 2013, Jun, 1, 75, 14-22.
- [22] Aigbodion V.S., Hassan S.B., Dauda E.T., Mohammed R.A., The development of mathematical model for the prediction of ageing behaviour for Al-Cu-Mg/bagasse ash particulate composites, Journal of Minerals & Materials Characterization & Engineering 2010, Oct, 20, 9(10), 907-917.
- [23] Kamal T., Siddiqui M.A., Evaluation of mustard husk ash as reinforcement for aluminium matrix composite, Materials Research Express 2018, Jul, 18, 5(8), 086509.
- [24] Kumar A., Lal S., Kumar S., Fabrication and characterization of A359/Al2O3 metal matrix composite using electro- magnetic stir casting method, Journal of Materials Research and Technology 2013, Jul, 1, 2(3), 250-254.
- [25] Sharath B.N., Madhu K.S., Venkatesh C.V., Experimental study on dry sliding wear behaviour of Al-B4C-Gr metal matrix composite at different temperatures, In Applied Mechanics and Materials 2019 (Vol. 895), 96-101, Trans Tech Publications Ltd.
- [26] Singh S., Ram L.C., Masto R.E., Verma SK. A comparative evaluation of minerals and trace elements in the ashes from lignite, coal refuse, and biomass fired power plants, International Journal of Coal Geology 2011, Aug, 1, 87(2), 112-120.
- [27] Mahdavi S., Akhlaghi F., Effect of SiC content on the processing, compaction behavior, and properties of Al6061/SiC/Gr hybrid composites, Journal of Materials Science 2011, Mar, 46(5), 1502-1511.
- [28] Ünlü B.S., Investigation of tribological and mechanical properties Al2O3-SiC reinforced Al composites manufactured by casting or P/M method, Materials & Design 2008, Dec, 1, 29(10), 2002-2008.
- [29] Narayanasamy P., Selvakumar N., Balasundar P., Effect of hybridizing MoS2 on the tribological behaviour of Mg-TiC composites, Transactions of the Indian Institute of Metals 2015, Oct, 68(5), 911-925
- [30] Selvakumar N., Narayanasamy P., Optimization and effect of weight fraction of MoS2 on the tribological behavior of Mg-TiC-MoS2 hybrid composites, Tribology Transactions 2016, Jul, 3, 59(4), 733-747.
- [31] Habibolahzadeh A., Hassani A., Bagherpour E., Taheri M., Dry friction and wear behavior of in-situ Al/Al3Ti composite, Journal of Composite Materials 2014, Apr, 48(9), 1049-1059.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9fac4eed-5ada-4eae-8fb8-ead711946bcc