PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Network Device Workload Prediction: A Data Mining Challenge at Knowledge Pit

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (15 ; 06-09.09.2020 ; Sofia, Bulgaria)
Języki publikacji
EN
Abstrakty
EN
FedCSIS 2020 Data Mining Challenge: Network Device Workload Prediction was the seventh edition of the international data mining competition organized at Knowledge Pit, in association with the Conference on Computer Science and Information Systems. The main goal was to answer the question of whether it is possible to reliably predict workload-related characteristics of monitored network devices based on historical readings. We describe the scope and explain the motivation for this challenge. We also analyze solutions uploaded by the most successful participants and investigate prediction errors which had the greatest influence on the results. Finally, we describe our baseline solution to the considered problem, which turned out to be the most reliable in the final evaluation.
Rocznik
Tom
Strony
77--80
Opis fizyczny
Bibliogr. 10 poz., wykr., rys.
Twórcy
  • Institute of Informatics, University of Warsaw, Warsaw, Poland
  • QED Software, Warsaw, Poland
  • Institute of Informatics, University of Warsaw, Warsaw, Poland
  • QED Software, Warsaw, Poland
autor
  • QED Software, Warsaw, Poland
  • Institute of Informatics, University of Warsaw, Warsaw, Poland
  • QED Software, Warsaw, Poland
Bibliografia
  • 1. A. Chądzyńska-Krasowska and M. Kowalski. Quality of Histograms as Indicator of Approximate Query Quality. In Proc. of FedCSIS 2016, pages 9–15.
  • 2. H. M. Hashemian. State-of-the-Art Predictive Maintenance Techniques. IEEE Trans. Instrum. Meas., 60(1):226–236, 2011.
  • 3. C. Liu. Shallow, Deep, Ensemble Models for Network Device Workload Forecasting. In Proc. of FedCSIS 2020.
  • 4. L. McInnes, J. Healy, N. Saul, and L. Großberger. UMAP: Uniform Manifold Approximation and Projection. J. Open Source Softw., 3(29):861, 2018.
  • 5. A. Mueen and E. Keogh. Online Discovery and Maintenance of Time Series Motifs. In Proc. of KDD 2010, pages 1089–1098.
  • 6. D. Ruta, L. Cen, and Q. H. Vu. Deep Bi-Directional LSTM Networks for Device Workload Forecasting. In Proc. of FedCSIS 2020.
  • 7. Ł. Sosnowski and T. Penza. Generating Fuzzy Linguistic Summaries for Menstrual Cycles. In Proc. of FedCSIS 2020.
  • 8. G. A. Susto, A. Schirru, S. Pampuri, S. McLoone, and A. Beghi. Machine Learning for Predictive Maintenance: A Multiple Classifier Approach. IEEE Trans. Ind. Informatics, 11(3):812–820, 2015.
  • 9. T. Wittkopp, A. Acker, S. Nedelkoski, J. Bogatinovski, and O. Kao. Superiority of Simplicity: A Lightweight Model for Network Device Workload Prediction. In Proc. of FedCSIS 2020.
  • 10. M. Zuefle and S. Kounev. A Framework for Time Series Preprocessing and History-based Forecasting Method Recommendation. In Proc. of FedCSIS 2020.
Uwagi
1. Track 1: Artificial Intelligence
2. Technical Session: 15th International Symposium Advances in Artificial Intelligence and Applications
3. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9fa8ed74-d660-47ea-9e56-6cbb1a55162e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.