PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of multi-walled carbon nanotubes on the damping property of cement mortar and mechanism analysis

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of the type and content of multi-wall carbon nanotubes (MWCNTs) on the damping performance of cement mortar is studied in this paper. The pristine MWCNTs (P-CNT) and the functionalized MWCNTs (F-CNT) grafted with COOH were used in the experiment. The content of MWCNTs was 0.05wt% and 0.1wt% of cement. The flexural/compressive strength and loss factor of CNT-mortar composites were measured. The experimental results show that MWCNTs can significantly enhance the flexural strength and loss factor, and the values increased with the increase of CNTs content. The effect F-CNT was better than P-CNT when the MWCNTs content was the same due to the presence of COOH. The mechanism of MWCNTs reinforced mortar damping performance was analyzed by a variety of micro test techniques. The test results of X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and thermogravimetry showed that MWCNTs did not change the compositions of mortar, but improved the polymerization degree of gel and the degree of hydration of cement. The results of mercury intrusion porosimetry, N2 adsorption and backscattered scanning electron microscopy showed that MWCNTs effectively reduced the porosity and interfacial transition zone thickness of mortar. Transmission electron microscope results showed that the energy dissipation capacity of mortar is increased due to the bridging effect of MWCNTs.
Rocznik
Strony
289--302
Opis fizyczny
Bibliogr. 53 poz., rys., wykr.
Twórcy
autor
  • Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing Key Laboratory of Earthquake Engineering and Structural Retrofit, Beijing University of Technology, Beijing 100124, China
autor
  • Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing Key Laboratory of Earthquake Engineering and Structural Retrofit, Beijing University of Technology, Beijing 100124, China
autor
  • Faculty of Science, Beijing University of Technology, Beijing 100124, China
Bibliografia
  • [1] Nazari M, Sritharan S. Influence of different damping components on dynamic response of concrete rocking walls. Eng Struct. 2020;212:1–11.
  • [2] Trevlopoulos K, Gueguen P, Helmstetter A, Cotton F. Earthquake risk in reinforced concrete buildings during aftershock sequences based on period elongation and operational earthquake forecasting. Struct Saf. 2020;84:1–14.
  • [3] Dai KS, Lu D, Zhang SH, Shi YF, Meng JY, Huang ZH. Study on the damping ratios of reinforced concrete structures from seismic response records. Eng Struct. 2020;223:1–11.
  • [4] Jeon EB, Ahn S, Lee IG, Koh HI, Park J, Kim HS. Investigation of mechanical/dynamic properties of carbon fiber reinforced polymer concrete for low noise railway slab. Compos Struct. 2015;134:27–35.
  • [5] Lee KS, Choi JI, Kim SK, Lee BK, Hwang JS, Lee BY. Damping and mechanical properties of composite composed of polyurethane matrix and preplaced aggregates. Constr Build Mater. 2017;145:68–75.
  • [6] Giner VT, Baeza FJ, Ivorra S, Zornoza E, Galao O. Effect of steel and carbon fiber additions on the dynamic properties of concrete containing silica fume. Mater Des. 2012;34:332–9.
  • [7] Noushini A, Samali B, Vessalas K. Effect of polyvinyl alcohol (PVA) fibre on dynamic and material properties of fibre reinforced concrete. Constr Build Mater. 2013;49:374–83.
  • [8] Chi L, Lu S, Yao Y. Damping additives used in cement-matrix composites: a review. Compos B Eng. 2019;164:26–36.
  • [9] Gurunandan M, Phalgun M, Raghavendra T, Udayashankar BC. Mechanical and damping properties of rubberized concrete containing polyester fibers. J Mater Civ Eng. 2019;31:1–10.
  • [10] Orak S. Investigation of vibration damping on polymer concrete with polyester resin. Cem Concr Res. 2000;30:171–4.
  • [11] Lee KS, Choi J-I, Park SE, Hwang J-S, Lee BY. Damping property of prepacked concrete incorporating coarse aggregates coated with polyurethane. Cem Concr Compos. 2018;93:301–8.
  • [12] Liang C, Liu T, Xiao J, Zou D, Yang Q. The damping property of recycled aggregate concrete. Constr Build Mater. 2016;102:834–42.
  • [13] Long WJ, Wei JJ, Xing F, Khayat KH. Enhanced dynamic mechanical properties of cement paste modified with graphene oxide nanosheets and its reinforcing mechanism. Cem Concr Compos. 2018;93:127–39.
  • [14] Liu T, Song W, Zou D, Li L. Dynamic mechanical analysis of cement mortar prepared with recycled cathode ray tube (CRT) glass as fine aggregate. J Clean Prod. 2018;174:1436–43.
  • [15] Yu P, Wang Z, Lai P, Zhang P, Wang J. Evaluation of mechanic damping proper ties of montmorillonite/organo-modified montmorillonite-reinforced cement paste. Constr Build Mater. 2019;203:356–65.
  • [16] Li H-D, Zhang Q-M, Feng G, Mei L, Wang Y, Long W-J. Multiscale improved damping of high-volume fly ash cementitious composite: combined effects of polyvinyl alcohol fiber and graphene oxide. Constr Build Mater. 2020;260:1–13.
  • [17] Kim GM, Nam IW, Yang B, Yoon HN, Lee HK, Park S. Carbon nanotube (CNT) incorporated cementitious composites for functional construction materials: the state of the art. Compos Struct. 2019;227:1–14.
  • [18] Clark MD, Krishnamoorti R. Dispersion of functionalized multiwalled carbon nanotubes. J Phys Chem C. 2009;113:20861–8.
  • [19] Najafishad S, Manesh HD, Zebarjad SM, Hataf N, Mazaheri Y. Production and investigation of mechanical properties and electrical resistivity of cement-matrix nanocomposites with graphene oxide and carbon nanotube reinforcements. Arch Civ Mech Eng. 2020;20:1–13.
  • [20] Najafishad S, Manesh HD, Zebarjad SM, Hataf N, Mazaheri Y. Production and investigation of mechanical properties and electrical resistivity of cement-matrix nanocomposites with graphene oxide and carbon nanotube reinforcements. Arch Civ Mech Eng. 2020;20:1–13.
  • [21] Li Y, Lin H. Experimental study on the effect of different dispersed degrees carbon nanotubes on the modification of magnesium phosphate cement. Constr Build Mater. 2019;200:240–7.
  • [22] Kim GM, Nam IW, Yoon HN, Lee HK. Effect of superplasticizer type and siliceous materials on the dispersion of carbon nanotube in cementitious composites. Compos Struct. 2018;185:264–72.
  • [23] Collins F, Lambert J, Duan WH. The influences of admixtures on the dispersion, workability, and strength of carbon nanotube-OPC paste mixtures. Cem Concr Compos. 2012;34:201–7.
  • [24] Kim GM, Yoon HN, Lee HK. Autogenous shrinkage and electrical characteristics of cement pastes and mortars with carbon nanotube and carbon fiber. Constr Build Mater. 2018;177:428–35.
  • [25] Lee HS, Balasubramanian B, Gopalakrishna GVT, Kwon S-J, Karthick SP, Saraswathy V. Durability performance of CNT and nanosilica admixed cement mortar. Constr Build Mater. 2018;159:463–72.
  • [26] Konsta-Gdoutos MS, Danoglidis PA, Falara MG, Nitodas SE. Fresh and mechanical properties, and strain and functionalization. Cem Concr Compos. 2017;82:137–51.
  • [27] Jung M, Lee Y-S, Hong S-G, Moon J. Carbon nanotubes (CNTs) in ultra-high performance concrete (UHPC): dispersion, mechanical properties, and electromagnetic interference (EMI) shielding effectiveness (SE). Cem Concr Res. 2020;131:1–15.
  • [28] Hawreen A, Bogas JA. Creep, shrinkage and mechanical properties of concrete reinforced with different types of carbon nanotubes. Constr Build Mater. 2019;198:70–81.
  • [29] Liew KM, Kai MF, Zhang LW. Mechanical and damping properties of CNT-reinforced cementitious composites. Compos Struct. 2017;160:81–8.
  • [30] Luo J, Duan Z, Xian G, Li Q, Zhao T. Damping performances of carbon nanotube reinforced cement composite. Mech Adv Mater Struc. 2015;22:224–32.
  • [31] Zhang W, Wu P, Zhang Y, Zeng W, Yang F. The effect of carbon nanotubes on t he mechanical and damping properties of macro-defect-free cements. Sci Eng Compos Mater. 2020;27:28–40.
  • [32] Yu P, Wang Z, Lu S, Lai P. Effects of carbon nanofibers and carboxyl functionalized multi-walled carbon nanotubes on mechanical damping behavior of cement paste. J Nanosci Nanotechno. 2019;19:163–9.
  • [33] Li W-W, Ji W-M, Liu Y, Xing F, Liu Y-K. Damping property of a cement-based material containing carbon nanotube. J Nanomater. 2015;2015:1–8.
  • [34] Ahmed H, Bogas JA, Guedes M, Costa-Pereira MF. Dispersion and reinforcement efficiency of carbon nanotubes in cementitious composites. Mag Concr Res. 2019;71:408–23.
  • [35] Sobolkina A, Mechtcherine V, Khavrus V, Maier D, Mende M, Ritschel M, Leonhardt A. Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix. Cem Concr Compos. 2012;34:1104–13.
  • [36] Lin Y, Du H. Graphene reinforced cement composites: a review. Constr Build Mater. 2020;265:1–16.
  • [37] Tsang SC, Harris PJF, Green MLH. Thinning and opening of carbon nanotubes by oxidation using carbon-dioxide. Nature. 1993;362:520–2.
  • [38] Mendoza O, Sierra G, Tobon JI. Influence of super plasticizer and Ca(OH)2 on the stability of functionalized multi-walled carbon nanotubes dispersions for cement composites applications. Constr Build Mater. 2013;47:771–8.
  • [39] Li Y, Hu SG. The microstructure of-the interfacial transition zone between steel and cement paste. Cem Concr Res. 2001;31:385–8.
  • [40] Chen J, Akono A-T. Influence of multi-walled carbon nanotubes on the hydration products of ordinary Portland cement paste. Cem Concr Res. 2020;137:1–13.
  • [41] Kurumisawa K, Nawa T, Owada H, Shibata M. Deteriorated hardened cement paste structure analyzed by XPS and Si-29 NMR techniques. Cem Concr Res. 2013;52:190–5.
  • [42] Li Z, Corr DJ, Han B, Shah SP. Investigating the effect of carbon nanotube on early age hydration of cementitious composites with isothermal calorimetry and Fourier transform infrared spectroscopy. Cem Concr Compos. 2020;107:1–8.
  • [43] Lam L, Wong YL, Poon CS. Degree of hydration and gel/space ratio of high-volume fly ash/cement systems. Cem Concr Res. 2000;30:747–56.
  • [44] Yu R, Spiesz P, Brouwers HJH. Effect of nano-silica on the hydration and microstructure development of ultra-high performance concrete (UHPC) with a low binder amount. Constr Build Mater. 2014;65:140–50.
  • [45] Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl Chem. 1985;57:603–19.
  • [46] MacLeod AJN, Collins FG, Duan W, Gates WP. Quantitative microstructural characterisation of Portland cement-carbon nanotube composites using electron and X-ray microscopy. Cem Concr Res. 2019;123:1–14.
  • [47] Bogas JA, Carrico A, Jose Tenza-Abril A. Microstructure of thermoactivated recycled cement pastes. Cem Concr Res. 2020;138:1–16.
  • [48] Gao Y, De Schutter G, Ye G. Micro- and meso-scale pore structure in mortar in relation to aggregate content. Cem Concr Res. 2013;52:149–60.
  • [49] Lyu K, She W, Chang H, Gu Y. Effect of fine aggregate size on the overlapping of interfacial transition zone (ITZ) in mortars. Constr Build Mater. 2020;248:1–12.
  • [50] Li Y, Hao J, Wang Z, Guan Z, Wang R, Chen H, Jin C. Experimental-computational investigation of elastic modulus of ultra-high-rise pumping concrete. J Adv Concr Technol. 2020;18:39–53.
  • [51] Hou D, Lu Z, Li X, Ma H, Li Z. Reactive molecular dynamics and experimental study of graphene-cement composites: structure, dynamics and reinforcement mechanisms. Carbon. 2017;115:188–208.
  • [52] Li Y, Li H, Wang Z, Jin C. Effect and mechanism analysis of functionalized multi-walled carbon nanotubes (MWCNTs) on C–S–H gel. Cem Concr Res. 2020;128:1–12.
  • [53] Gao Y, Zhu X, Corr DJ, Konsta-Gdoutos MS, Shah SP. Characterization of the interfacial transition zone of CNF-reinforced cementitious composites. Cem Concr Compos. 2019;99:130–9.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9fa4ff80-93e6-440f-be96-2a97144c14e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.