
Zeszyty Naukowe Akademii Morskiej w Szczecinie 44 (116)  141 

Scientific Journals  Zeszyty Naukowe 
of the Maritime University of Szczecin Akademii Morskiej w Szczecinie 

2015, 44 (116), 141–147 
ISSN 1733-8670 (Printed) Received:  31.08.2015 
ISSN 2392-0378 (Online) Accepted:  06.11.2015 
DOI: 10.17402/069 Published: 07.12.2015 

Selected issues of the fractional calculus for analysis 
of dynamic properties of measuring transducers used 
in transportation facilities 

Mirosław Luft1, Daniel Pietruszczak1, Elżbieta Szychta1,Leszek Szychta2 

1 Kazimierz Pulaski University of Technology and Humanities in Radom 
Faculty of Transport and Electrical Engineering 
29 Malczewskiego St., 26-600 Radom, Poland, e-mail: {m.luft; d.pietruszczak; e.szychta}@uthrad.pl 

2 Lodz University of Technology, Faculty of Electrical, Electronic, Computer and Control Engineering 
 Institute of Mechatronics and Information Systems 
 18/22 Stefanowskiego St., 90-924 Łódź, Poland, e-mail: leszek.szychta@p.lodz.pl 
 corresponding author 

Key words: accelerometer, ARX identification method, fractional derivative, fractional calculus, MATLAB 
&Simulink programme, measuring transducer, median relative error, transportation facilities 

Abstract 
This paper outlines the use of the fractional calculus for dynamic measurements while describing dynamic 
properties of measuring transducers, which the authors consider to be an original and unique achievement. 
The aim of this paper is to investigate how models of accelerometers based on the fractional calculus notation 
convey their dynamic behaviour in comparison to models represented by differential equations of integer 
orders and to the processing characteristics of their real counterparts. This paper presents state-of-the-art 
knowledge, simulation and laboratory studies of measuring transducers to measure acceleration 
(accelerometers), considering them a representative group of the measuring transducers used in transportation 
facilities. Measurement errors and comparisons of classical and fractional models in terms of dynamic 
properties were examined. The advantages of fractional calculus in modelling dynamic elements are also 
indicated. Tests are executed in the MATLAB & Simulink programme. 

 
 

Introduction 
The problem of measuring the dynamic proper-

ties of objects by means of fractional order differ-
ential equations (or more broadly – fractional 
calculus), although well known since the times of 
Gottfried Wilhelm Leibniz (1646–1716) and Guil-
laume François Antoine de l’Hospital (1661–1704), 
has always been ignored due to restrictions result-
ing from a lack of appropriate calculation methods 
or possibilities of their verification (among other 
reasons connected to the lack of calculation poten-
tial in earlier computers) (Podlubny, 1999; Os-
talczyk, 2008; Kaczorek, 2011). At present, ad-
vances in technical and calculation possibilities 
means that the problems related to these limitations 
have, to a large extent, been solved. There are more  

 

and more publications dealing with the topic of 
fractional order differential equations. The majority 
of them, however, deal with theoretical aspects of 
the problem. There are no publications that put 
a strong emphasis on the practical application of 
fractional calculus and combining theory with real 
applications. This paper fills that gap. 

Mathematical models describing the dynamic 
performance of devices (measuring devices, auto-
mation mechanisms, sensors, etc.) are widely used 
in different disciplines of science. Their task is to 
reproduce the real behaviour of the examined 
device in a simulation environment. They are most 
frequently used at early stages of research, prior to 
the real examination of the problem, or construction 
of a device as a quick tool for fast prototyping. 
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These models allow for simulated testing of an 
object’s behaviour under normal and extreme 
working conditions. In this way onerous and costly 
preliminary investigations of real objects that aim at 
early assessment of their usefulness (the method 
investigated or the object) for concrete applications 
are avoided. What is more, these models are also 
the basic tools that allow us to get acquainted with 
the mathematical or physical foundations of a given 
object or phenomenon’s performance. 

In the classic notation, second-order measuring 
transducers presented in this paper are described 
with second-order differential equations like many 
other groups of measuring transducers used in 
transportation facilities (Luft et al., 2012), such as: 
RLC circuits, displacement measurement sensors, 
accelerometers systems including tensometric, 
piezoelectric transducers and mechanical vibrating 
systems.  

The aim of this paper is to investigate how mod-
els of accelerometers based on the fractional calcu-
lus notation convey their dynamic behaviour in 
comparison to models represented by differential 
equations of integer orders and in comparison to the 
processing characteristics of their real counterparts 
(Pietruszczak, 2012). A particular aim of this paper 
is to combine theoretical knowledge of fractional 
calculus with its application for modelling dynamic 
properties of real accelerometers and generalize this 
knowledge so that it could refer to the class of 
objects modelled by means of differential equa-
tions. 

Model of an accelerometer 
The dynamic behaviour of accelerometers (or in 

general – objects, sensors and measuring devices 
for different applications using in transportation 
facilities) is written down in a form of differential 

equations or operator transmittances. In the process 
of determining the dynamic behaviour of a model 
for an accelerometer (object), dynamic behaviour 
and physical phenomena are taken into account, 
which results from external influences and specific 
properties of an accelerometer being an effect of 
their design. Thus, the accuracy of reproducing an 
accelerometer’s real dynamic behaviour is first of 
all, connected with this phenomenon. 

 
Figure 1. Diagram of an accelerometer’s design: x – object 
motion relative to a fixed system of coordinates, y – motion 
of a vibrating mass relative to a fixed system of coordinates, 
yx – motion of a vibrating mass relative to a vibrating 
object (Luft et al., 2011; Luft, Szychta & Pietruszczak, 
2015)  

Figure 1 depicts a mechanical model of a single-
axis accelerometer. Movement x of the base in 
relation to the immovable system of coordinates 
entails the movement of inert mass m, which can be 
divided into movement yx, in relation to the immov-
able system of coordinates and movement y, in 
relation to the base. The mass is hung on a spring 
having elasticity coefficient k and fixed to a damper 
of damping coefficient b. Movement y is converted 
into an electric signal and fed to the sensor’s out-
put. The use of piezoelectric elements is a typical 
conversion mechanism. Figure 2 depicts the design 

a)  b) 

    
Figure 2. Piezoelectric accelerometer: a) general design, b) design of the element for seismic mass movement conversion into 
electric signal (Walter, 2008) 
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of a piezoelectric accelerometer (a) and components 
of the element converting the inert mass movement 
into an electric signal (b). In this type of sensor, the 
inert mass, acting on piezoelectric material, causes 
its deformation and generates an electric charge. 
The basis of the sensor’s functionality is the piezo-
electric phenomenon consisting of the generation of 
electric charges on the walls of a crystal during its 
elastic deformation. 

Regardless of the mechanical design of acceler-
ometers and the applied elements converting mass 
movement into an electric signal (piezoelectric, 
capacitive, piezoresistant accelerometers, MEMS) 
their dynamic properties are modelled on the basis 
of the diagram shown in Figure 1.  

The dynamic behaviour of the accelerometer is 
written down in a form of a differential equation of 
the second order: 
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where:  
w  – motion of a vibrating mass relative to 

a vibrating object; 
x – object motion relative to a fixed system 

of coordinates, parameters characteristic of 
accelerometers:  
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Introducing a non-integral order to the measuring 
transducer’s equation (1) converts it into (Pie-
truszczak, 2012):  
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where: v  – fractional order derivatives. 

The equation of the accelerometer’s dynamic 
behaviour (1) refers to its design containing me-
chanical elements, which are the analogues of 
electrical elements. Thus, for example, by way of 
analogy mechanical elements of the accelerometer 
can be converted into electrical ones and such 
a system can be analyzed with the use of Kirchhoff 
laws or electric systems can be considered in this 
way. As the dynamic behaviour of the majority of 
different types of sensors is described by means of 
a differential equation of the first and second order, 

the accelerometer is a good example for further 
expansion of research into other types of sensors 
and objects. 

The notation of dynamic properties of measur-
ing sensors and instruments, automation objects, 
etc. (in general, the objects revealing dynamic 
properties) in a form of differential equations is 
well known, described in literature, and commonly 
used. However, it is restricted to the description of 
dynamic properties in a form of integer order 
equations: {1,2,3…}. Despite this fact, in most 
cases, such equations describe real issues of the real 
world dynamic properties fairly well. It might seem 
that limiting the differential equations to integer 
orders should result in a simplified model that does 
not convey the object’s real performance in full. 
However, in majority of applications, it is adequate 
for the description. Perhaps this is a result of suffi-
cient measurement accuracy in modern technology 
or the degree of complexity in the modelled objects. 
Nevertheless, it is a fact that some basic issues are 
described better by fractional order equations, e.g.: 
properties of the so called super-condensers, per-
meation of liquids through porous substances, 
permeation of charges through real insulators, 
properties of viscoelastic materials, or phenomena 
connected with dynamic friction. Owing to the 
materials used for their construction (among others, 
piezoelectric materials) and the physical phenom-
ena (elasticity and damping) occurring in them, the 
three latter issues concern accelerometers. Since 
these issues are described more accurately by 
models of fractional order equations, one can 
expect that the current models of the dynamic 
properties of accelerometers (by means of differen-
tial equations of integer orders) are not complex 
enough for the physical phenomena occurring in 
them. The aim of this paper is to compare the 
results of investigations for real accelerometers 
with those for their models based on integer order 
differential equations (commonly used at present) 
and those of fractional order so as to answer the 
question: which of these ways of modelling conveys 
the dynamic behaviour of a real accelerometer 
better? 

The answer to this question may mean the first 
step on the way towards abandoning “classical” 
modelling of objects by means of differential 
equations of integer order in favour of those of 
fractional orders as the ones which better reflect the 
dynamic behaviour of real objects. 

Selected issues of fractional calculus 
In fractional calculus, a derivative of arbitrary 

order is treated as an interpolation of a sequence of 
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operators of discrete orders, with operators of 
continuous orders. A notation introduced by H.D. 
Davis (Ostalczyk, 2008) is used here, in which 
a fractional order derivative of a function f(t) is 
represented as: 

 )(0 tfDt t
  (3) 

where t0 and t define the integration or differentia-
tion interval and v is the order of the derivative. 
As the problem has been continually developed, 
there are many definitions of fractional derivative. 
Because describing dynamic properties of the 
measuring transducers requires fractional arithme-
tic, we can use one of three definitions (Kaczorek, 
2011): Grünwald-Letnikov, Riemann-Liouville and 
Caputo. 

The Grünwald-Letnikov Definition 

The function of a real variable f(t) defined in the 
[t0, t] interval is given. Assuming that the function 
increment h > 0 is such that: h = (t – t0)/k provided 
that h  0 causes that h  + for the established 
t – t0, then the Grünwald-Letnikov fractional de-
rivative of a discrete function for f(hi), i = 0,1,2,… 
is defined as: 
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In mathematics, the Grünwald–Letnikov deriva-
tive is a basic extension of the derivative in frac-
tional calculus that allows one to take the derivative 
a non-integer number of times. It was introduced by 
Anton Karl Grünwald (1838–1920) from Prague, 
in 1867, and by Aleksey Vasilievich Letnikov 
(1837–1888) in Moscow in 1868. 

The Riemann-Liouville Definition 

The Riemann-Liouville’s fractional derivative is 
the function described by the formula: 
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where v is the order of integration within the [t0, t] 
interval of f(t) function, k – 1    k,   R+, (x) 
is defined as: 
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for x  C. 
The Riemann–Liouville fractional derivative 

corresponding derivative is calculated using La-
grange’s rule for differential operators. Computing 

k-th order derivative over the integral of order  
(k − α), the α order derivative is obtained. It is 
important to remark that k is the nearest integer 
bigger than α. 

The Caputo’s Definition 

The Caputo’s definition of fractional derivative 
is described as: 
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where: n – 1    n. 
The Caputo fractional derivative was introduced 

by M. Caputo in his paper (1967). In contrast to the 
Riemann-Liouville fractional derivative, when 
solving differential equations using Caputo’s defi-
nition, it is not necessary to define the fractional 
order initial conditions. It is assumed that Caputo 
fractional derivative includes Riemman-Liouville 
derivatives. 

Concept and research results 
The concept of this work is based on a compari-

son between different models of an accelerometer’s 
dynamic behaviour (based on differential equations 
of integer and fractional orders) with the processing 
characteristics of a real accelerometer so as to 
obtain an unambiguous answer to the question of 
which method of modelling is more accurate and 
whether there are any criteria for which a certain 
model is better at reproducing the dynamic behav-
iour of the real accelerometer (e.g. can it be related 
to the accelerometer’s sensitivity?). 

The research plan includes the following algo-
rithm of proceedings: 
1. Investigating the processing characteristics of 

real accelerometers over the entire range of the 
measuring signal processing with the highest 
possible measurement accuracy (determination 
of amplitude and phase characteristics of exam-
ined accelerometers). 

2. Developing models describing the dynamic 
behaviour of the real accelerometers by means 
of differential equations of integer order on the 
basis of characteristics of the measuring signal 
processing. 

3. Developing models describing the dynamic 
behaviour of real accelerometers by means of 
fractional calculus on the basis of characteristics 
of the measuring signal processing. 

4. Comparing processing characteristics of the 
accelerometer models from points 2 and 3 with 
their real counterparts and comparing processing 
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characteristics of different models with each 
other. 

5. Developing an optimum method of determining 
fractional order differential equations describing 
dynamic behaviour of real accelerometers (on 
the basis of research from points 1 to 4). 
The research results include: 

• Algorithms for determining models describing 
an accelerometer’s dynamic behaviour based on 
differential equations of integer and fractional 
orders (for the definitions by Grünwald-
Letnikov, Riemann-Liouville and Caputo). 

• A comparison of amplitude and phase character-
istics and responses to typical set input functions 
between models of integer and fractional orders. 

• An assessment of the accuracy of modelling by 
means of integer and fractional order equations 
in the context of a real accelerometer behaviour, 
its parameters and its design (sensitivity, spe-
cific structure) and identification of conditions 
in which modelling dynamic behaviour by 
means of fractional order equations is more ad-
vantageous than integer-order models. 

• A generalization of the developed theory con-
cerning accelerometer modelling to models of 
other objects, the dynamic properties of which 
are written in the form of a differential equation. 
The completed preliminary research results in-

clude: 
• The determination of simulation models of the 

accelerometer described by means of differential 
equations of integer and fractional orders ac-
cording to Grünwald-Letnikov definition. 

• The determination of real accelerometer models 
described by differential equations of integer 
and fractional orders for selected frequencies. 

• The determination of amplitude characteristics 
for a real accelerometer and models of integer 
and fractional orders for selected frequencies. 

The results were presented in works: (Luft, Cioć 
& Pietruszczak, 2011; Luft et al., 2011; 2012; 
Pietruszczak, 2012; Pietruszczak & Szychta, 2013; 
Luft, Szychta & Pietruszczak, 2015). Table 1 
includes some research results. It presents results of 
acceleration measurements in the measurement 
system shown in Figure 3. 

Signals received from accelerometers of differ-
ent sensitivities were compared in the measurement 
system. Sensitivity of accelerometer A1, which was 
adopted as a model, was ca. 30 times higher than 
that of the investigated accelerometer A2. Equations 
of integer and fractional orders describing dynamic 
behaviour of the investigated accelerometer were 
determined by means of the AutoRegressive with 
eXogenous input (ARX) identification method on 
the basis of the data from accelerometers. The 
signals from determined models were compared to 
the signal from the model accelerator. The relative 
errors of measurements were determined by adopt-
ing the signal from the model accelerator as 
a reference value. The median of the series of 500 
successive measurement samples was adopted as 
the error measure. Measurements were taken sepa-
rately for the following frequencies of the vibration 
exciter: 100 Hz, 200 Hz, 300 Hz, 400 Hz and 
500 Hz. 

Table 1. Values of median relative error for the transduc-
er’s model of integer and fractional order 

Frequ- 
ency 

 
[Hz] 

Median relative 
error for the integer 

order model 
[%] 

Median relative error 
for the fractional 

order model 
[%] 

Diffe- 
rence 

 
[%] 

100 30.8089 20.8040 10.0049 
200 30.2997 20.8041 9.4956 
300 29.5564 20.8042 8.7522 
400 28.3097 20.8039 7.5058 
500 26.0184 20.8040 5.2144 
 

 
Figure 3. Measurement system (Luft, Szychta & Pietruszczak, 2015) 
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On the basis of preliminary investigations it was 
found out that in the examined cases the models 
described by means of fractional order equations 
convey the accelerometer processing characteristics 
more accurately than integer order equations. 
Depending on examined frequencies the accuracy 
of reproduced dynamic behaviour of an acceler-
ometer by a model is between ca. 5% to ca. 10%. 
These values can be increased if we developed 
a more accurate model of fractional orders. Table 1 
presents results of laboratory tests. Theoretical and 
simulation tests are included in our work. Conclu-
sions from this research are compatible with con-
clusions from the laboratory tests. 

Research methodology 
The methodology of the first stage of research 

into verification of models describing dynamic 
behaviour of accelerometers is included: 
1. The determination of a mathematical model 

(based on differential equations of integer or-
ders) available for investigations of a real accel-
erometer. The mathematical apparatus com-
prises the identification of a differential equation 
describing dynamic behaviour of the acceler-
ometer on the basis of data from a model (refer-
ence) accelerometer and the investigated one 
(the basic identification method is the ARX 
method) (Luft, Cioć & Pietruszczak, 2011). 

2. The verification of the correctness of the accel-
erometer performance model obtained in point 1 
via a comparison of its performance with the 
performance of the real accelerometer over the 
entire range of its working frequencies. This 
analysis includes amplitude and phase character-
istics of the real accelerometer and the model 
obtained in point 1. It is assumed that the model 
is correct when deviations of model characteris-
tics from those of the real accelerometer do not 
exceed 2% at any measurement point. 

3. The determination of a mathematical model of 
the accelerometer from point 1 based on frac-
tional calculus on the basis of the model from 
the preliminary research. The fractional order 
model of the accelerometer was based on Grün-
wald-Letnikov definition (4). 

4. The comparison of performances of models 
from points 1 and 3 over the entire working fre-
quency range of the accelerometer. The analysis 
includes amplitude and phase characteristics and 
the models’ responses to set input functions of 
different courses and frequencies. 

5. The comparison of performances of models 
from points 1 and 3 to the performance of the 

real accelerometer (investigations over the entire 
range of working frequencies of the accelerome-
ter). Selected amplitude and phase characteris-
tics of the real accelerometer determined in 
a laboratory as well as the accelerometer’s  
responses to set input functions of different 
courses and frequencies will be compared with 
the responses of the models obtained in points 
1 and 3. 

The research from the first stage is to be re-
peated at the second stage for: 

1. Different types of accelerometers (capacitive, 
piezoelectric, MEMS, compression and shear 
designs) and of different sensitivities. 

2. Models based on Reimann-Liouville and 
Caputo’s definitions of fractional derivative. 

A wide scope of research in the field of different 
types of accelerometers aims to make the obtained 
results of the accelerometers’ dynamic behaviour 
model independent, independent of the specific 
properties of one type of accelerometers. It will 
allow us to check effectiveness of dynamic behav-
iour modelling over a wide spectrum of cases and 
to grasp characteristic parameters of a model for 
concrete constructional solutions. Research into 
new models describing dynamic behaviour of 
objects (here – accelerometers) is connected with 
adopting a reference model (reference signal, 
reference characteristics). In the case when differ-
ent models of accelerometers are compared with 
each other, the best reference is the amplitude and 
phase characteristics of the model (reference) 
accelerometer of very high sensitivity. As an indus-
try standard, the accelerometer manufacturer supply 
only basic data concerning the accelerometer’s 
sensitivity and its amplitude and phase characteris-
tics in a form of a diagram showing only a linear 
part of processing. This limited data are insufficient 
when new models of dynamic behaviour, which 
have never been described in literature, are investi-
gated. To avoid any doubts concerning accuracy 
and methodology of measurements, for the sake of 
comparison one must know accurate amplitude and 
phase characteristics of the accelerometer. It is also 
necessary to develop such characteristics with the 
use of equipment of appropriate accuracy and 
measurement methods adopted as a standard. In the 
case of accelerometers the measuring equipment 
must meet the standards concerning the measure-
ment process ISO 16063-21, ISO-16063-11 and 
data processing – ISO-17025. All these standards 
are met by a complete calibration system produced 
by Bruel & Kjear together with Pulse software. 
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Conclusions 
On the basis of the preliminary simulation and 

laboratory tests that have already been carried out, 
it can be concluded that these results support the 
continuation of this research. In order to fully 
confirm the preliminary research results it is neces-
sary to generalize the results obtained over the 
entire processing range of the accelerometer (possi-
bly the widest range of frequencies) and for differ-
ent types of accelerometers revealing different 
sensitivities. As it is pioneering research, measure-
ments must be taken with the highest accuracy 
possible to reduce errors resulting from inaccurate 
calibration. Equipment of high measurement accu-
racy, usually used for calibration of accelerometers 
is best for this purpose. 

At the moment it is difficult to find a direct 
practical application of the knowledge we are going 
to gain during the course of these investigations. 
A common application of the theory of fractional 
order differential equations in the practice of mod-
elling dynamic properties of real objects requires 
verification through numerous investigations of 
different objects. At the moment this kind of re-
search is very limited. The proposed project, how-
ever, corresponds to the research into modelling of 
measuring sensors. In the future, the research 
results could turn out to be significant in the dis-
semination of this method of modelling for the 
description of dynamic properties of phenomena 
and objects. 
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