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Abstract 

In this contribution there are considered thin periodic plates. The tolerance averaging method, cf. [12, 13, 4], is 

applied to model problems of vibrations of these plates. Hence, the effect of the microstructure size is taken 
into account in model equations of the tolerance model. Calculations are made for periodic plate bands using 

this model and the asymptotic model for various boundary conditions. 
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1. Introduction 

Thin periodic plate bands are main objects under consideration. These plate bands have a 

periodic microstructure along their spans on the microlevel, cf. Figure 1. 

 
Figure 1. Fragment of a thin periodic plate band 

Plate bands of this kind are consisted of many repeated small elements. Every 

element can be treated as a thin plate band with span l along the x1-axis. This span 

describes the size of the microstructure and is called the microstructure parameter l. It is 

necessary to distinguish that in various problems of such plate bands the effect of the 

microstructure size cannot be neglected. These plates are modelled using different 

averaging approaches, e.g. based on the asymptotic homogenization, cf. [7]. However, 

most averaged equations of these plates neglect the effect of the microstructure size. 

In order to take into account this effect the tolerance averaging technique, cf. [12] 

and [13], can be applied. Different applications of this method to analyse various 

periodic structures are shown in a series of papers, e.g. [1-3], [8-11]. This approach is 

also successfully adopted to functionally graded structures, e.g. [4-6]. 
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The main aim of this note is to present governing equations of the tolerance model 

and the asymptotic model of thin periodic plates. Equations of these models can be 

derived using the tolerance modelling procedure and the asymptotic modelling 

procedure, respectively. In an example there are analysed lower and higher free vibration 

frequencies of periodic plate bands with various boundary conditions. 

2. Modelling foundations 

Set x≡(x1,x2), x≡x1, z≡x3. Let us consider a periodic plate band with span L along  

the x-axis. Hence, all properties of the plate can be periodic functions of x, but are 

independent of x2. Denote a plate deflection by w(x,t), loads normal by p and a derivative 

with respect to x by ¶(×). The region },2/)(2/)(:),{( LÎ££-ºW xxdzxdzx  denotes the 

undeformed plate band, with an interval L=[0,L] and the plate thickness d(·). The 

periodicity cell on L is denoted by }0{]2/,2/[ ´-ºD ll . 

Properties of the plate band are determined by periodic functions of x: a mass density 

per unit area μ, a rotational inertia J and bending stiffnesses bαβγδ in the form: 
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Denoting b≡b1111 and using the Kirchhoff-type plates theory assumptions the known four 

order differential equation for deflection w(x,t) of periodic plate band can be derived: 
,)()( pwwwb =¶J¶-m+¶¶¶¶ &&&&  (2) 

with highly oscillating, periodic, non-continuous coefficients being functions of x. 

3. The outline of the tolerance modelling 

Averaged equations thin periodic plates can be obtained using the tolerance modelling 

procedure (or the asymptotic procedure), with the basic concepts, defined in books, 

cf. [12, 13, 4]. 

Let D(x)≡x+D, LD={xÎL: D(x)ÌL}, be a cell at xÎLD. The averaging operator for an 

arbitrary integrable function f is defined by 
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 (3) 

If a function f is periodic in x, then averaged value by (3) is constant. 

Following the above books there can be introduced a set of tolerance-periodic 

functions TPδ
α(L,D), a set of slowly-varying functions SVδ

α(L,D), a set of highly 

oscillating functions HOδ
α(L,D), (α≥0, δ is a tolerance parameter). Denote by h(·) a 

continuous highly oscillating function, hÎFSδ
2(L,D). Function h(·) is called the 

fluctuation shape function of the 2-nd kind, if it depends on l as a parameter and satisfies 

conditions: ∂khÎO(lα-k) for k=0,1,…,α, ∂kh≡h, and <μh>(x)≈0 for every xÎLD,  

μ>0, μÎTPδ
1(L,D). 

Using the above concepts, two fundamental assumptions of the tolerance modelling 

can be formulated, cf. Woźniak et al. [12, 13] and for thin periodic plates [3]. 

The first assumption is the micro-macro decomposition, in which it is assumed that 

the plate deflection can be decomposed as: 

.,,1),,()(),(),,( NAtxVxhtxWtzxw AA K=+=  (4) 
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Functions ),(),(),,( 2 DLÎ×× dSVtVtW A  are basic kinematic unknowns, called the 

macrodeflection and the fluctuation amplitudes, respectively; hA(·) are the known 

fluctuation shape functions, which can be assumed as trigonometric functions. 

The second assumption is the tolerance averaging approximation, i.e. terms of an 

order of O(δ) can be treated as negligibly small, cf. [12, 13, 3], e.g. for ),,(2 DLÎ dTPf  

),,(2 DLÎ dFSh  ),,(2 DLÎ dSVF  in: ),()()( d+>=<>< Oxfxf  ),()()()( d+>=<>< OxFxfxfF  

)()()()()( d+>¶=<>¶< OxFxhfxhFf . 

The tolerance modelling procedure can be found in the books [12, 13, 4]. Here, it is 

shown only an outline of this method. 

In the tolerance modelling two basic steps can be introduced. In the first step micro-

macro decomposition (4) is applied. In the second step averaging operator (3) is used to 

the resulting formula. Hence, the tolerance averaged lagrangean >< hL  is obtained: 
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with underlined terms, which depend on the microstructure parameter l. 

4. The outline of the asymptotic modelling 

In the asymptotic modelling, cf. [13], [4], the asymptotic procedure is applied. Using the 

asymptotic decomposition ),(),(
~

),(),,( 2 tyQyxhtyUtyxw AA
ee e+=  in equation (2) and 

bearing in mind the limit passage ε→0 terms O(ε) are neglected in final equations. 

Using the above asymptotic decomposition and averaging operator (3) to the 

resulting formula, the asymptotic averaged lagrangean >< 0L  is obtained: 
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This model does not describe effects of the microstructure size. 

5. Governing equations of presented models 

Equations of two models are presented here: the tolerance model, the asymptotic model. 

Substituting >< hL , (5), to the proper Euler-Lagrange equations, after some 

manipulations we arrive at the following system of equations for W(×,t) and VA(×,t): 
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Equations (7) together with micro-macro decomposition (4) stand the tolerance model of 

thin periodic plate bands. These equations describe free vibrations of these plates and 

take into account the effect of the microstructure size on them by the underlined terms 

dependent on the microstructure parameter l. In contrast to equation (2), which has non-

continuous, highly oscillating and periodic coefficients, equations (7) have constant 

coefficients. The basic unknowns W, VA, A=1,…,N, are slowly-varying functions in xºx1. 

It can be observed that boundary conditions have to be formulated only for the 

macrodeflection W on all edges. 
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Using the asymptotic modelling procedure, shown in [13, 4], equations of an 

approximate model, without the effect of the microstructure size, can be obtained in the 

following form: 
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Equations (8) stand the governing equations of the asymptotic model of periodic plate 

bands. It can be observed that these equations can be also derived by neglecting the 

underlined terms in equations (7). The asymptotic model equations have also constant 

coefficients, but they describe free vibrations of thin plates under consideration on the 

macrolevel only.  

6. Applications – free vibrations of periodic plate bands with various boundary 

conditions 

Let us consider a thin periodic plate band with span L along the x-axis, neglecting the 

loading p, p=0. The material properties of this plate are independent of the x2-coordinate. 

Let us assume the constant plate thickness d.  

  

Figure 2. A cell of the plate band 

It is assumed that the plate band is made of two different homogeneous isotropic 

materials, with properties described by Young’s moduli E″, E′ and mass densities ρ″, ρ′: 
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where γ is a distribution parameter of material properties, cf. Figure 2; the Poisson’s 

ratio ν≡ν″=ν′ is constant. 

Our considerations are restricted to only one fluctuation shape function, i.e. A=N=1. 

Denote hºh1, VºV1. Hence, micro-macro decomposition (4) has the form: 
),,()(),(),( txVxhtxWtxw +=  (10) 

where the fluctuation shape function h(x) assumed for the cell shown in Figure 2, takes 

the form: 

,),(],)/2[cos()( 2 LÎDÎ+p= xxyclylyh  (11) 

with parameter c is a constant determined by 0>=m< h : 

.)]}1([){)(sin( 1-g-r¢¢+gr¢pr¢¢-r¢pg=c  (12) 
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Under denotations: 
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tolerance model equations (7) can be written as: 
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however, asymptotic model equations (8) take the form of one equation: 
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Certain approximate formulas of free vibrations frequencies for periodic plate bands 

with various boundary conditions can be obtained applying the known Ritz method, cf. 

[4-6]. Using this method the maximal strain energy Umax and the maximal kinetic energy 

Kmax are determined. For the plate band solutions to equations (14) and (15), which are 

applied in the Ritz method, can be assumed in the form: 

),cos()(),(),cos()(),( txAtxVtxAtxW VW waQ=waX=  (16) 

where: α is a wave number; ω is a free vibration frequency; functions X(·) and Q(·) are 

eigenvalue functions for the macrodeflection and the fluctuation amplitude, respectively, 

which have to satisfy the proper boundary conditions for x=0, L. Denote the first and 

second order derivatives of functions X(·) and Q(·) by: 
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Moreover, let us introduce denotations: 
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Using the conditions of the Ritz method: 
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and make some manipulations we arrive at the following formulas: 
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of the lower frequency -w  of free macro-vibrations and the higher frequency +w  of free 

micro-vibrations, respectively, in the framework of the tolerance model. 

Calculations can be made for various cases of boundary conditions: 

- the simply supported plate band: 0)()()0()0( =X¶¶=X=X¶¶=X LL ; 

- the plate band clamped on both edges: 0)()()0()0( =X¶=X=X¶=X LL ; 
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- the clamped-hinged plate band: 0)()()0()0( =X¶¶=X=X¶=X LL ; 

- the cantilever plate band:  0)()()0()0( =X¶¶¶=X¶¶=X¶=X LL . 

7. Remarks  

In this paper the tolerance model governing equations of thin periodic plate bands are 

presented and applied to analyse free vibrations of them. The tolerance modelling 

replaces the governing differential equation with non-continuous, periodic coefficients 

by the system of differential equations with constant coefficients, which involve terms 

with the microstructure parameter. The tolerance model describes the effect of the 

microstructure size on vibrations. Hence, there are calculated the lower free vibration 

frequency and the higher free vibration frequency, which is related to the microstructure, 

for plate bands with various boundary conditions. These calculations are made using the 

procedure of the Ritz method.  
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