PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Numerical simulations of metallic foam safeguarded RC square columns under lateral soft impact

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
When a truck impacts on a reinforced concrete (RC) column such as a bridge pier at a high velocity, a large reaction force would generate which would damage the truck, hurt the passengers and destroy the column. Lightweight foams with excellent energy absorbing performance are often used as safeguard constructions to resist impact. The impact behavior can be divided into soft and hard impact. In the case of soft impact, the impacted structure deformation is predominant. In the paper, metallic foam safeguarded RC square columns impacted by a rigid block are simulated using the ABAQUS code software, and the influential characteristic of foam density on the peak impact force and ultimate energy absorption is focused on. The simulated results indicate that the foam safeguard constructions play remarkable role on impact resistance. It is exciting that there appears almost an identical critical foam density corresponding to the minimum peak force and the ultimate energy absorption, which is of great significance for engineering design of this type of safeguard constructions to resist impact.
Twórcy
autor
  • Tongling University, Faculty of Architectural Engineering, Tongling, China
Bibliografia
  • 1. T. Hing-Ho, N.T.K. Lam. Collapse of Reinforced Concrete Column by Vehicle, Computer-Aided Civil and Infrastructure Engineering, 23 (6) : 427-436, 2008.
  • 2. D. Mestrovic, D. Cizmar, L. Miculinic. Reliability of concrete columns under vehicle impact, WIT Transactions on the Built Environment, Vol 98: 157-165, 2008.
  • 3. H.M.I. Thilakarathna, D.P. Thambiratnam, M. Dhanasekar. Behaviour of Axially Loaded concrete columns subjected to transverse impact loads, 34th Conference on Our World in Concrete & Structures, August, Singapore, pp.16-18, 2009.
  • 4. H.M.I. Thilakarathna, D.P. Thambiratnam, M. Dhanasekar, N. Perera. Numerical simulation of axially loaded concrete columns under transverse impact and vulnerability assessment, International Journal of Impact Engineering, 37 (11): 1100-1112, 2010.
  • 5. A.S. Joshi, L.M. Gupta. A simulation study on quantifying damage in bridge piers subjected to vehicle collisions, International Journal of Advanced Structural Engineering, 4:8, 2012.
  • 6. P. Jiříček, M. Foglar. Numerical analysis of a bridge pier subjected to truck impact, 18th International Conference Engineering Mechanics 2012, May 14-17, pp.557-568.
  • 7. H. Sharma, S. Hurlebaus, P. Gardoni. Performance-based response evaluation of reinforced concrete columns subject to vehicle impact, International Journal of Impact Engineering, 43: 52-62, 2012.
  • 8. H. Sharma, P. Gardoni, S. Hurlebaus. Probabilistic demand model and performance-based fragility estimates for RC column subject to vehicle collision, Engineering Structures, 74: 86-95, 2014.
  • 9. L. Chen, Y. Xiao, S. El-Tawil. Impact tests of model RC columns by an equivalent truck frame, Journal of Structural Engineering, 142 (5): 04016002, 2016.
  • 10. L. Chen, S. El-Tawil, Y. Xiao. Reduced models for simulating collisions between trucks and bridge piers, Journal of Structural Engineering, 21 (6): 04016020, 2016.
  • 11. O.I. Abdelkarim, M.A. Elgawady. Performance of bridge piers under vehicle collision, Engineering Structures, 140: 337-352, 2017.
  • 12. D. Zhou, R. Li, J. Wang, C. Guo. Study on impact behavior and impact force of bridge pier subjected to vehicle collision, Shock and Vibration, 18: 1-12, 2017.
  • 13. T.V. Do, T.M. Pham, H. Hao. Dynamic responses and failure modes of bridge columns under vehicle collision, Engineering Structures, 156: 243-259, 2018.
  • 14. L. Jing, Z. Wang, J. Ning, L. Zhao. The dynamic response of sandwich beams with open-cell metal foam cores, Composites Part B, 42 (1): 1-10, 2011.
  • 15. C. Atas, C. Sevim. On the impact response of sandwich composites with cores of balsa wood and PVC foam, Composite Structures, 93 (1): 40-48, 2011.
  • 16. G. Reyes, S. Rangaraj. Fracture properties of high performance carbon foam sandwich structures, Composites: Part A, 42(1):1-7, 2011.
  • 17. AASHTO-LRFD. Bridge design specifications – customary US units. Sixth ed. Washington, DC: American Association of State Highway and Transportation Officials; 2012.
  • 18. V. S. Deshpande, N. A. Fleck. Isotropic constitutive models for metallic foams[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(6-7): 1253-1283.
  • 19. Abaqus analysis user’s manual. Version 6.11, Dassault Systems Simulia Corporation,USA, 2011.
  • 20. L. J. Gibson and M. F. Ashby. Cellular solids: structure and properties, second ed. Cambridge: Cambridge University Press, 1997.
  • 21. S. Santosa, T. Wierzbicki. On the modeling of crush behavior of a closed-cell aluminum foam structure. Journal of the Mechanics and Physics of Solids, 46(4): 645-669, 1998.
  • 22. S. Santosa, J. Banhart, T. Wierzbicki. Experimental and numerical analysis of bending of foam-filled sections, Acta Mechanica, 148(1-4): 199-213, 2001.
  • 23. O. I. Abdelkarim, M. A. ElGawady. Performance of hollow-core FRP–concrete–steel bridge columns subjected to vehicle collision. Engineering Structures, 2016, 123: 517-531.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9fa0c26c-c6b9-42fc-854a-67f3d312e1bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.