Opuscula Math. 43, no. 5 (2023), 621-632
https: //doi.org/10.7494/OpMath.2023.43.5.621 OPUSCULA MATHEMATICA

A VIABILITY RESULT
FOR CARATHEODORY NON-CONVEX
DIFFERENTIAL INCLUSION
IN BANACH SPACES

Nabil Charradi and Said Sajid
Communicated by P.A. Cojuhari

Abstract. This paper deals with the existence of solutions to the following differential
inclusion: () € F(t,z(t)) a.e. on [0,T[ and z(t) € K, for all ¢t € [0,T], where
F :[0,T] x K — 2F is a Carathéodory multifunction and K is a closed subset of
a separable Banach space E.
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1. INTRODUCTION

Let E be a separable Banach space, K a nonempty closed subset of E, T' a strictly
positive real and put I :=[0,7]. Let F : I x K — 2F be a multifunction measurable
with respect to the first argument and uniformly continuous with respect to the second
argument.

The aim of this work is to establish, for any fixed zy € K, the existence of
an absolutely continuous function z(-) : I — K satisfying

&(t) € F(t,z(t)) a.e.on [0,T],
z(0) = o, (1.1)
x(t) e K for all ¢t € I.

Concerning this subject, we begin with recalling the pioneering work of Haddad [8],
where the right-hand side is an upper semi-continuous convex and compact-valued
multifunction x — F'(z) in finite-dimensional space, while in [7] an existence result
is established for a globally upper semi-continuous multifunction in Hilbert space,
though K is convex.
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The main improvement is the comparison with previous results on the same subject
especially the work, of Duc Ha [6] which was the basis for several papers; see [1,2,11].
It has been proved the existence of solution to the problem (1.1), where F(-,x) is
measurable and F (¢, -) is m(t)-Lipschitz, m(-) € L'(I,R*"). This result is a multivalued
version of Larrieu’s work [9]. More precisely, the existence of solutions of (1.1) was
given under the following tangency condition:

t+h
1
V(t,z) e I x K : liminfhe<x—|— /F(s,x)ds,K) =0,
t

h—0t

where e(-, ) denotes the Hausdorff excess and f:+h F(s,z)ds stands for the Aumann
integral of the multifunction ¢ — F(¢,x). Note that the convergence to zero of the
above tangency condition depend on the t. Here techniques of existence of selections
have been introduced, notably a Lemma given by Zhu [13], that will given another
proof in this paper.

Different extensions of the result of Duc Ha [6] have been investigated by many
authors in the case of functional differential inclusions or semilinear differential in-
clusions. See Aitalioubrahim [2], Lupulescu and Necula [10-12] and the references
therein.

In current literature, regarding the differential inclusion without Lipschitz condition
we refer the reader to the work of Fan and Li [5]. They considered the following
differential inclusion:

u(t) € A(t)u(t) + F(t,u(t)), (1.2)

where A(t) is a family of unbounded linear operators generating an evolution operator
and F(t,-) is lower semicontinuous. However x(F(t, D)) < k(t)x(D) for every bounded
subset D, where y is the measure of noncompactness and k(-) € L*(I,R"). Dong and
Li [4] have established a viable solution to (1.2) when A(t) = A and F is a Carathéodory
single-valued map.

In this paper, we consider the existence of solutions to the problem (1.1) in general
situation supposing that the right-hand side (¢, 2) — F(t, x) is measurable with respect
to the first argument and uniformly continuous with respect to the second argument
in the sense that

Ve >03d(e) > 0V(t,z,y) e I x K x K :
lz =yl <d(e) = du(F(t,z), F(t,y)) <e,

where dy denotes the Hausdorff distance.

This condition is weaker than the one adopted by Duc Ha [6] in the spatial case
when the Lipschitz coefficient m(t) is a constant L > 0.

The following case deserves mentioning: F' is a time-independant continuous
multifunction and K is compact. In this case the above hypothesis is satisfied.

Our approach is based on Euler’s method, it consists of constructing a sequence
of approximate solutions by using Lebesgue’s Differentiation Theorem and selection
techniques.
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2. NOTATIONS, DEFINITIONS AND THE MAIN RESULT

In all paper, E is a separable Banach space with the norm || - ||. For x € E and r > 0,
let B(z,7) :=={y € E: ||y — x| <r} be an open ball centered at x with radius r and

B(xz,r) be its closure, and put B = B(0,1). For € E and for nonempty bounded
subsets A, B of E, we denote by d(z) or d(x, A) the real value inf{||x — y|| : y € A},

e(A, B) :=sup{dp(x):x € A} and dg(A, B) =max{e(A, B),e(B,A)}.

We denote by L£(I) the o-algebra of Lebesgue measurable subsets of I, and B(E) is
the o-algebra of Borel subsets of E for the strong topology. A multifunction is said to
be measurable if its graph belongs to £(I) ® B(E). For more details on measurability
theory, we refer the reader to the book by Castaing and Valadier [3].

Let F: I x K — 2F be a multifunction with nonempty closed values in E.

On F we make the following hypotheses:

(Hy) For each x € K, t — F(t,x) is measurable.
(Hy) Forallt € I, x — F(t,x) is uniformly continuous as follows:

Ve >030(e) > 0V(t,z,y) € I x K x K :
e —yll <0(e) = du(F(t, ), F(t,y)) <e.

(Hs) There exists M > 0, for all (¢,2) € I x K,

[E @t x)ll = sup |lz]| < M.
zEF(t,x)

(Hy) For allt € I and = € K, for every measurable selection o(+) of the multifunction
t— F(t,x)

) t+h
liminf — =
imin th<x—|—/a(s)ds) 0,

t
which is equivalent to
t+h

1
lim inf he(x—l— /F(s,x)ds,K) =0.
t

h—0t

Let zyp € K. Under hypotheses (H;)—(H4) we shall prove the following result:

Theorem 2.1. There exists an absolutely continuous function x(-) : I — E such that

(t) € F(t,z(t)) a.e. on[0,T7,

x(t) € K, forallt eI
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3. PRELIMINARY RESULTS

To begin with, let us recall the following lemmas that will be used in the sequel.

Lemma 3.1 ([13]). Let Q be a nonempty set in E. Let G : [a,b] x Q — 2F be
a multifunction with nonempty closed values satisfying:

(i) for every x € Q, G(-,z) is measurable on [a,b],
(ii) for everyt € [a,b], G(t,-) is (Hausdorff) continuous on Q.

Then for any measurable function x(-) : [a,b] — Q the multifunction G(-,z(-)) is
measurable on [a,b].

Lemma 3.2 ([3]). Let R : I — 2% be a measurable multifunction with nonempty
closed values in E. Then R admits a measurable selection: there exists a measurable
function v : I — E that is r(t) € R(t) for allt € I.

We need also the following lemma, due to Zhu [13], established for a multifunction
(not necessarily closed values) in Banach spaces (not necessarily separable). However,
the result was proven for almost everywhere on I, because the measurability of
a multifunction I" adopted by this author is defined as follows: there exists a sequence
(00 () nen of measurable functions that is I'(t) C {0, (¢) : n € N} a.e.on I. Here, we are
concerned with this Lemma in the context of measurable closed-values multifunction
in separable Banach spaces. This result is obtained at every element of I by a different
method.

Lemma 3.3. Let G : I — 2F be a measurable multifunction with nonempty closed
values and z(+) : I — E a measurable function. Then for any positive measurable
function r(-) : I — RT, there exists a measurable selection g(-) of G such that
foralltel,
lg(t) = 2()]| < d(=(2), G(1)) + (D).
Proof. Let t € I. By the characterization of the lower bound, there exists x € G(t)
such that
[ = 2()[| < d(=(8), G(2)) + (D).

Consider the following multifunction
t—= Q) ={zcE: |lz—z0)| <dz@1),G1) +r)}.

Obviously, @ is measurable with nonempty closed values. On the other hand, since G
is measurable with closed values, then Q(t) N G(¢) is a measurable multifunction with
nonempty closed values, hence by Lemma 3.2, admits a measurable selection ¢t — g(t).
This completes the proof. O

4. PROOF OF THE MAIN RESULT
The proof is based on two steps. It consists of the construction of a sequence of

approximants in the first one, while in the second step we establish the convergence
of such approximate solutions.



A viability result for Carathéodory non-convex differential inclusion in Banach spaces 625

Step 1. Construction of approximants.
For each integer n > max(T; 1), put 7, := % and consider the following partition
of the interval I with the points

e

L=1im, +1=0,1,...,n

Remark that I = U?;Ol [t7, 17 1]. Since t — F(t, o) is measurable with closed val-
ues, then by Lemma 3.2, there exists a measurable function fy(-) such that for all
fo(t) € F(t,x0). Note that by (Hz), fo(-) € L*(I, E).

For all n € N*, put f§(-) = fo(-). We shall prove the following theorem:

Theorem 4.1. For alln € N*, there exist po(n) € N*, 27 € K, uf(-), f(-) € L*(I, E)
such that for allt € 1,

F0) € Ftap), I ~ OIS s

and for almost every t € I,
ug(t) € F(t,z0) + o7 B, lug(t) = fo®) < o7,
and
z] =0 + Ty, (myuo (0) € K.
Proof. By (Hy), for all t € [0,T7,

t+7n

1
imiat 2ot + [ o) -
t

Then for all ¢ € [0, T, there exists an integer ¢, (n) > n such that

t+Tp, (n)
1

T, (n)

dg <LEO + / f()(S)dS) < 2nl+2 .
t

Hence, by the characterization of the lower bound, there exists x1(t) € K such that

tH 7o, (n)

1 e, (n) 1
x1(t) — xp — / fo(s)ds|| < === + .
TSOt (n) ) 2Tl+2 2n+2

Then
tH7p, (n)
r1(t) — x 1 1
1( ) 0o / fO(S)dS < W

To,(n) To,(n)
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On the other hand, in view of Lebesgue’s Differentiation Theorem, we can suppose

t+Te, (n)
1 1
fo(s)ds — fo)|| < 55 a.e. on I.
T‘Pt(”) 2n+1
Therefore,
- 1
n(t) ~ 20 fo(t)|| < 5> ae onl.
To, (n) 2
Set
n xl(t) — X0
ug (t) =
To,(n)

Then for all ¢t € [0, 77,
x1(t) = xo + To, m)uo (1) € K,
and

1
llug (t) — fo(t)| < 3n acon I

from which we deduce that

1 —
ug(t) € F(t,zo) + Q—RB.

Particularly
To + T, (myuo (t) € K, forall t € [tg,t7],

and )
ug (t) € F(t,zo) + QTE a.e. on [t§, t1 [

Let 0, = 6(5:4=) be the real given by (Hs). Choose ¢, (n) > Tu{;{f”, and set
2t =1 (t)) = w0 + T%(n)ug(O) € K.

Since

T T
! —xol| = ——|lug (0)| < (M +1) <6y,
then, by (Ha),
1
dg(F(t,2t), F(t,z0)) < forall t € I,

— 2n+2 )
thus

n 1
d(fo(t), F(t,z7)) < Tt foralltel.
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In view of Lemma 3.3, there exists a measurable function f7*(-) € L'(I, E) such that
f1(t) € F(t,«}) and for all ¢t € I,

IA26) = Fo(e)] < dUfol0), F(t.3) + 5y < 5y 0

By induction, for p € {2,...,n}, assume that have been constructed ¢, _,(n) € N*,

xy € K, f 1 (t) € F(t,xp_;) and uy_,(-), satisfying the following relations:

n I = n
u,_o(t) € F(t,z,_5) + 2—nB a.e.on [ty ot 4,

1
lip—2(t) = fi2 (Ol < 57 ae on [tp_o, 5 4],

8
v
-

I

Tp(ty—z) = w5z + Twp,Q(mugﬂ(thz) €K,

and

n n 1
1fp-1(t) = f2(®)] < gy forallt e L.

Let us define zj, f7 (), uy_1(-) and ¢, _,(n), that is, ¢, ,(n) > ¢, _,(n). Indeed,
forallt € I, fy 4(t) € F(t,27_,). Then, by (Ha),

t+7n

. . ]- n n

lﬁgungof EdK (a?p_l + / p_l(s)ds> =0, foralltel0,T].
i

Then for all ¢ € [0, T, there exists ¢~ *(n) € N such that ¢?~'(n) > ©?~%(n),

AT =1y
L < nog / " (s)d > < 1
— UK :Cp—l p—1 s)as | >~ ont2’
wa—l(n) / 2m

Hence, by the characterization of the lower bound, there exists x,(t) € K such that

-1,
t
1 n n T‘Pf_l(n) 1
T o1 xp(t) ~Tp1 T / p—l(s)ds = on+2 + on+2”
vy T (n) t
Then .
(1) Mop i
zp(t) —xp_y 1 1
P f;_l(S)dS S 2n+1
wy(n) P~ (n) Y



628 Nabil Charradi and Said Sajid

On the other hand, in view of Lebesgue’s Differentiation Theorem, we can suppose

e? )
1 " n 1
. o1(s)ds — f ()] < nFl A€ on I
P m) Y
Therefore,
Tp(t xh_ 1
o) Z o 1) <55 aeonlt
T p—1 2n
i (n)
Set 0
zp(t) —ap_4
qu(t) - T L ’
el (n)

then for all ¢ € [0, 7]

and

from which, we get

Then we have

T, 1+ T@ffl(n)ugfl(t) €K, foralltelty ;,t],

and
uy 4 (t) € F(t,z;_q) + 2%? a.e.on [ty q,t)].
Choose ¢, _, (n) > max(wfgill (n);¢,_,(n)). Then ¢, (n) > T(*jl). We set
T, = xp(t;ll) =z, 4+ T@p,1<n>u;’71(’5371) € K.
Then
o il = I B € s ) <

hence, by (Ha),

n n 1
du(F(t,zy), F(t,z,_1)) < PTESE forall ¢t € I.
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By Lemma 3.3, there exists a measurable function f}'(-) € L'(I,E) such that

fy(t) € F(t,xy) and for all t € I,

170) — o < A (0, F ) + g

Then
1

Ifp () = fra @) < ot

Put k,, = ¢, (n). Remark that the previous properties are satisfied for k,.

Now, let us define the step functions.
For all n > 1, for allp: 1,2,...,n, for all t € [0, T, set 0,(t) ="

p—1>

(4.1)

whenever

t € [ty_1:tpl Zx[tn tn] () f_1(t) and w,(t ZX e (B)uy_1 ().

On each interval [ ty] consider

p—1

Then
T (On(t) =251 € K, for all t € [0,T7,
Tn(t) = up(t) € F(t, 2, (0, (1)) + 2i§ a.e. on I,
lun () = fa Il < 5

Step 2. The convergence of (xy(-))
By construction for all t € I,

fu(t) € F(t, 2n(Ok, (1)))-

On the other hand, let ¢t € I and p = 1,2,...,n, by relation (4.1),

a.e.on I.

1
155 (®) = foma @ < 5o
Then, by induction,
n p
175 (®) = ol < s

which implies
n

1) = ol < g
Then
[fr+1(t) = fo I < 1 fatr(t) = fo(OI + [ fu(t) = fo(D)]

n+1 n_ . 3(n+1)
2n+2 2n+1 — 2n+2

IN
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Let t € I and (m,n) € N* x N* with m > n. Then

[fm (@) = @I < [[fm(t) = frn—1 @ + [ fr=1() = frm—2(O| - - | fas1(8) — (D]
3m 3(m—1 3n+1

<3(m m—1 n+1>.

<Slgmtomatot

am agm— 1 2n+1

Put v, = 3. Then according to a classical argument (the d’Alembert criterion),
the numerical series 3" v; converges, hence (S,) = (31, v;) is a Cauchy sequence.
Since

Hfm(t) - fn(t)H < Sm - Sna

then (f,,(:))n>1 is a Cauchy sequence in L!(I, E). We denote by f(-) its limit.

Moreover, by relations
¢

T, (t) = o + /un(s)ds
0
and X
||’LLn(t) - fn(t)” S 27, a.e. on L

it follows that the subsequence (z,(-)), converges almost everywhere on I to an abso-
lutely continuous function, namely z(-).

Recall that T
0, (1)) —t| < —
00, (6) — 1] < —

for all n > 1. Since

e B, (1)) = 2(D)]] < e B, (1)) — 2n )] + 2n(t) — 2(0)]
< / (M + 1)ds + [l2a(t) — (1),

Ok, (£)

then
lim z,(0, (t)) = x(t), forallte[0,T]

n—oo

Hence, by dominated convergence theorem, for all t € I

t t

z(t) = lim z,(t) = lim (xo—i—/un(s)ds) :xo—l—/f(s)ds,

n—00 n—00
0 0

so f(t) = &(t) a.e. on I.
In addition, for every ¢t € [0,T[ we have z, (0, (t)) € K. Since K is closed, then
z(t) € K. Moreover, as x(-) is (M + 1)-Lipschitz, then z(t) € K, for all ¢ € [0, 7.
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Furthermore, observe that

d(f(8), F(t,=(t)) < [[f(t) = fa(Ol + du (F(t, 200k, (1)), F(t, 2(1))),

since (fn(-)) converges to f(-) a.e. on [0,7] and x — F(t,x) is continuous, then
&(t) = f(t) € F(t,z(t)) for a.e. t € I. This completes the proof of Theorem 2.1.
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