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Abstract. This paper deals with the existence of solutions to the following differential
inclusion: ẋ(t) ∈ F (t, x(t)) a.e. on [0, T [ and x(t) ∈ K, for all t ∈ [0, T ], where
F : [0, T ] × K → 2E is a Carathéodory multifunction and K is a closed subset of
a separable Banach space E.
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1. INTRODUCTION

Let E be a separable Banach space, K a nonempty closed subset of E, T a strictly
positive real and put I := [0, T ]. Let F : I × K → 2E be a multifunction measurable
with respect to the first argument and uniformly continuous with respect to the second
argument.

The aim of this work is to establish, for any fixed x0 ∈ K, the existence of
an absolutely continuous function x(·) : I → K satisfying





ẋ(t) ∈ F (t, x(t)) a.e. on [0, T [,
x(0) = x0,

x(t) ∈ K for all t ∈ I.

(1.1)

Concerning this subject, we begin with recalling the pioneering work of Haddad [8],
where the right-hand side is an upper semi-continuous convex and compact-valued
multifunction x → F (x) in finite-dimensional space, while in [7] an existence result
is established for a globally upper semi-continuous multifunction in Hilbert space,
though K is convex.
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The main improvement is the comparison with previous results on the same subject
especially the work, of Duc Ha [6] which was the basis for several papers; see [1, 2, 11].
It has been proved the existence of solution to the problem (1.1), where F (·, x) is
measurable and F (t, ·) is m(t)-Lipschitz, m(·) ∈ L1(I,R+). This result is a multivalued
version of Larrieu’s work [9]. More precisely, the existence of solutions of (1.1) was
given under the following tangency condition:

∀(t, x) ∈ I × K : lim inf
h→0+

1
h

e

(
x +

t+h∫

t

F (s, x)ds, K

)
= 0,

where e(·, ·) denotes the Hausdorff excess and
∫ t+h

t
F (s, x)ds stands for the Aumann

integral of the multifunction t → F (t, x). Note that the convergence to zero of the
above tangency condition depend on the t. Here techniques of existence of selections
have been introduced, notably a Lemma given by Zhu [13], that will given another
proof in this paper.

Different extensions of the result of Duc Ha [6] have been investigated by many
authors in the case of functional differential inclusions or semilinear differential in-
clusions. See Aitalioubrahim [2], Lupulescu and Necula [10–12] and the references
therein.

In current literature, regarding the differential inclusion without Lipschitz condition
we refer the reader to the work of Fan and Li [5]. They considered the following
differential inclusion:

u̇(t) ∈ A(t)u(t) + F (t, u(t)), (1.2)

where A(t) is a family of unbounded linear operators generating an evolution operator
and F (t, ·) is lower semicontinuous. However χ(F (t, D)) ≤ k(t)χ(D) for every bounded
subset D, where χ is the measure of noncompactness and k(·) ∈ L1(I,R+). Dong and
Li [4] have established a viable solution to (1.2) when A(t) = A and F is a Carathéodory
single-valued map.

In this paper, we consider the existence of solutions to the problem (1.1) in general
situation supposing that the right-hand side (t, x) → F (t, x) is measurable with respect
to the first argument and uniformly continuous with respect to the second argument
in the sense that

∀ε > 0 ∃δ(ε) > 0 ∀(t, x, y) ∈ I × K × K :
∥x − y∥ ≤ δ(ε) ⇒ dH(F (t, x), F (t, y)) ≤ ε,

where dH denotes the Hausdorff distance.
This condition is weaker than the one adopted by Duc Ha [6] in the spatial case

when the Lipschitz coefficient m(t) is a constant L > 0.
The following case deserves mentioning: F is a time-independant continuous

multifunction and K is compact. In this case the above hypothesis is satisfied.
Our approach is based on Euler’s method, it consists of constructing a sequence

of approximate solutions by using Lebesgue’s Differentiation Theorem and selection
techniques.
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2. NOTATIONS, DEFINITIONS AND THE MAIN RESULT

In all paper, E is a separable Banach space with the norm ∥ · ∥. For x ∈ E and r > 0,
let B(x, r) := {y ∈ E : ∥y − x∥ < r} be an open ball centered at x with radius r and
B(x, r) be its closure, and put B = B(0, 1). For x ∈ E and for nonempty bounded
subsets A, B of E, we denote by dA(x) or d(x, A) the real value inf{∥x − y∥ : y ∈ A},

e(A, B) := sup{dB(x) : x ∈ A} and dH(A, B) = max{e(A, B), e(B, A)}.

We denote by L(I) the σ-algebra of Lebesgue measurable subsets of I, and B(E) is
the σ-algebra of Borel subsets of E for the strong topology. A multifunction is said to
be measurable if its graph belongs to L(I) ⊗ B(E). For more details on measurability
theory, we refer the reader to the book by Castaing and Valadier [3].

Let F : I × K → 2E be a multifunction with nonempty closed values in E.
On F we make the following hypotheses:

(H1) For each x ∈ K, t → F (t, x) is measurable.
(H2) For all t ∈ I, x → F (t, x) is uniformly continuous as follows:

∀ε > 0 ∃δ(ε) > 0 ∀(t, x, y) ∈ I × K × K :
∥x − y∥ ≤ δ(ε) ⇒ dH(F (t, x), F (t, y)) ≤ ε.

(H3) There exists M > 0, for all (t, x) ∈ I × K,

∥F (t, x)∥ := sup
z∈F (t,x)

∥z∥ ≤ M.

(H4) For all t ∈ I and x ∈ K, for every measurable selection σ(·) of the multifunction
t → F (t, x)

lim inf
h→0+

1
h

dK

(
x +

t+h∫

t

σ(s)ds

)
= 0,

which is equivalent to

lim inf
h→0+

1
h

e

(
x +

t+h∫

t

F (s, x)ds, K

)
= 0.

Let x0 ∈ K. Under hypotheses (H1)–(H4) we shall prove the following result:

Theorem 2.1. There exists an absolutely continuous function x(·) : I → E such that




ẋ(t) ∈ F (t, x(t)) a.e. on [0, T [,
x(0) = x0,

x(t) ∈ K, for all t ∈ I.
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3. PRELIMINARY RESULTS

To begin with, let us recall the following lemmas that will be used in the sequel.
Lemma 3.1 ([13]). Let Ω be a nonempty set in E. Let G :

[
a, b] × Ω → 2E be

a multifunction with nonempty closed values satisfying:
(i) for every x ∈ Ω, G(·, x) is measurable on [a, b],
(ii) for every t ∈ [a, b], G(t, ·) is (Hausdorff) continuous on Ω.

Then for any measurable function x(·) : [a, b] → Ω the multifunction G(·, x(·)) is
measurable on [a, b].
Lemma 3.2 ([3]). Let R : I → 2E be a measurable multifunction with nonempty
closed values in E. Then R admits a measurable selection: there exists a measurable
function r : I → E that is r(t) ∈ R(t) for all t ∈ I.

We need also the following lemma, due to Zhu [13], established for a multifunction
(not necessarily closed values) in Banach spaces (not necessarily separable). However,
the result was proven for almost everywhere on I, because the measurability of
a multifunction Γ adopted by this author is defined as follows: there exists a sequence
(σn(·))n∈N of measurable functions that is Γ(t) ⊂ {σn(t) : n ∈ N} a.e.on I. Here, we are
concerned with this Lemma in the context of measurable closed-values multifunction
in separable Banach spaces. This result is obtained at every element of I by a different
method.
Lemma 3.3. Let G : I → 2E be a measurable multifunction with nonempty closed
values and z(·) : I → E a measurable function. Then for any positive measurable
function r(·) : I → R+, there exists a measurable selection g(·) of G such that
for all t ∈ I,

∥g(t) − z(t)∥ ≤ d(z(t), G(t)) + r(t).
Proof. Let t ∈ I. By the characterization of the lower bound, there exists x ∈ G(t)
such that

∥x − z(t)∥ ≤ d(z(t), G(t)) + r(t).
Consider the following multifunction

t → Q(t) =
{

x ∈ E : ∥x − z(t)∥ ≤ d(z(t), G(t)) + r(t)
}

.

Obviously, Q is measurable with nonempty closed values. On the other hand, since G
is measurable with closed values, then Q(t) ∩ G(t) is a measurable multifunction with
nonempty closed values, hence by Lemma 3.2, admits a measurable selection t → g(t).
This completes the proof.

4. PROOF OF THE MAIN RESULT

The proof is based on two steps. It consists of the construction of a sequence of
approximants in the first one, while in the second step we establish the convergence
of such approximate solutions.
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Step 1. Construction of approximants.
For each integer n > max(T ; 1), put τn := T

n and consider the following partition
of the interval I with the points

tn
i = iτn, i = 0, 1, . . . , n.

Remark that I =
⋃n−1

i=0 [tn
i , tn

i+1]. Since t → F (t, x0) is measurable with closed val-
ues, then by Lemma 3.2, there exists a measurable function f0(·) such that for all
f0(t) ∈ F (t, x0). Note that by (H3), f0(·) ∈ L1(I, E).

For all n ∈ N∗, put fn
0 (·) = f0(·). We shall prove the following theorem:

Theorem 4.1. For all n ∈ N∗, there exist φ0(n) ∈ N∗, xn
1 ∈ K, un

0 (·), fn
1 (·) ∈ L1(I, E)

such that for all t ∈ I,

fn
1 (t) ∈ F (t, xn

1 ), ∥fn
1 (t) − fn

0 (t)∥ ≤ 1
2n+1 ,

and for almost every t ∈ I,

un
0 (t) ∈ F (t, x0) + 1

2n
B, ∥un

0 (t) − f0(t)∥ ≤ 1
2n

,

and
xn

1 = x0 + τφ0 (n)u
n
0 (0) ∈ K.

Proof. By (H4), for all t ∈ [0, T [,

lim inf
n→+∞

1
τn

dK

(
x0 +

t+τn∫

t

f0(s)ds

)
= 0.

Then for all t ∈ [0, T [, there exists an integer φt(n) > n such that

1
τφt (n)

dK

(
x0 +

t+τφt (n)∫

t

f0(s)ds

)
≤ 1

2n+2 .

Hence, by the characterization of the lower bound, there exists x1(t) ∈ K such that

1
τφt (n)

∥∥∥∥∥∥∥
x1(t) − x0 −

t+τφt (n)∫

t

f0(s)ds

∥∥∥∥∥∥∥
≤

τφt (n)

2n+2 + 1
2n+2 .

Then ∥∥∥∥∥∥∥
x1(t) − x0

τφt (n)
− 1

τφt (n)

t+τφt (n)∫

t

f0(s)ds

∥∥∥∥∥∥∥
≤ 1

2n+1 .
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On the other hand, in view of Lebesgue’s Differentiation Theorem, we can suppose
∥∥∥∥∥∥∥

1
τφt (n)

t+τφt (n)∫

t

f0(s)ds − f0(t)

∥∥∥∥∥∥∥
≤ 1

2n+1 a.e. on I.

Therefore, ∥∥∥∥∥
x1(t) − x0

τφt (n)
− f0(t)

∥∥∥∥∥ ≤ 1
2n

a.e. on I.

Set

un
0 (t) = x1(t) − x0

τφt (n)
.

Then for all t ∈ [0, T [,

x1(t) = x0 + τφt (n)u
n
0 (t) ∈ K,

and

∥un
0 (t) − f0(t)∥ ≤ 1

2n
a.e. on I

from which we deduce that

un
0 (t) ∈ F (t, x0) + 1

2n
B.

Particularly
x0 + τφt (n)u

n
0 (t) ∈ K, for all t ∈ [tn

0 , tn
1 ],

and
un

0 (t) ∈ F (t, x0) + 1
2n

B a.e. on [tn
0 , tn

1 [.

Let δn = δ( 1
2n+2 ) be the real given by (H2). Choose φ0(n) > T (M+1)

δn
, and set

xn
1 := x1(tn

0 ) = x0 + τφ0 (n)u
n
0 (0) ∈ K.

Since
∥xn

1 − x0∥ = T

φ0(n)∥un
0 (0)∥ ≤ T

φ0(n) (M + 1) ≤ δn,

then, by (H2),

dH(F (t, xn
1 ), F (t, x0)) ≤ 1

2n+2 , for all t ∈ I,

thus

d(f0(t), F (t, xn
1 )) ≤ 1

2n+2 , for all t ∈ I.
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In view of Lemma 3.3, there exists a measurable function fn
1 (·) ∈ L1(I, E) such that

fn
1 (t) ∈ F (t, xn

1 ) and for all t ∈ I,

∥fn
1 (t) − f0(t)∥ ≤ d(f0(t), F (t, xn

1 ) + 1
2n+2 ≤ 1

2n+1 .

By induction, for p ∈ {2, . . . , n}, assume that have been constructed φ
p−2(n) ∈ N∗,

xn
p−1 ∈ K, fn

p−1(t) ∈ F (t, xn
p−1) and un

p−2(·), satisfying the following relations:

un
p−2(t) ∈ F (t, xn

p−2) + 1
2n

B a.e. on [tn
p−2, tn

p−1[,

∥un
p−2(t) − fn

p−2(t)∥ ≤ 1
2n

a.e. on [tn
p−2, tn

p−1[,

xn
p−1 := xp(tn

p−2) = xn
p−2 + τφ

p−2(n)u
n
p−2(tn

p−2) ∈ K,

and

∥fn
p−1(t) − fn

p−2(t)∥ ≤ 1
2n+1 , for all t ∈ I.

Let us define xn
p , fn

p (·), un
p−1(·) and φp−1(n), that is, φp−1(n) > φp−2(n). Indeed,

for all t ∈ I, fn
p−1(t) ∈ F (t, xn

p−1). Then, by (H4),

lim inf
n→+∞

1
τn

dK

(
xn

p−1 +
t+τn∫

t

fn
p−1(s)ds

)
= 0, for all t ∈ [0, T [.

Then for all t ∈ [0, T [, there exists φp−1
t

(n) ∈ N such that φp−1
t

(n) > φp−2
t

(n),

1
τφp−1

t (n)
dK

(
xn

p−1 +

t+τ
φ

p−1
t

(n)∫

t

fn
p−1(s)ds

)
≤ 1

2n+2 ,

Hence, by the characterization of the lower bound, there exists xp(t) ∈ K such that

1
τφp−1

t (n)

∥∥∥∥∥∥∥∥
xp(t) − xn

p−1 −

t+τ
φ

p−1
t

(n)∫

t

fn
p−1(s)ds

∥∥∥∥∥∥∥∥
≤

τφp−1
t (n)

2n+2 + 1
2n+2 .

Then ∥∥∥∥∥∥∥∥

xp(t) − xn
p−1

τφp−1
t (n)

− 1
τ

φ
p−1
t

(n)

t+τ
φ

p−1
t

(n)∫

t

fn
p−1(s)ds

∥∥∥∥∥∥∥∥
≤ 1

2n+1 .
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On the other hand, in view of Lebesgue’s Differentiation Theorem, we can suppose
∥∥∥∥∥∥∥∥

1
τ

φ
p−1
t

(n)

t+τ
φ

p−1
t

(n)∫

t

fn
p−1(s)ds − fn

p−1(t)

∥∥∥∥∥∥∥∥
≤ 1

2n+1 a.e. on I.

Therefore, ∥∥∥∥∥
xp(t) − xn

p−1
τφp−1

t (n)
− fn

p−1(t)
∥∥∥∥∥ ≤ 1

2n
a.e. on I.

Set
un

p−1(t) =
xp(t) − xn

p−1
τφp−1

t (n)
,

then for all t ∈ [0, T [

xp(t) = xn
p−1 + τφp−1

t (n)u
n
p−1(t) ∈ K,

and

∥un
p−1(t) − fn

p−1(t)∥ ≤ 1
2n

a.e. on I,

from which, we get

un
p−1(t) ∈ F (t, xn

p−1) + 1
2n

B.

Then we have

xn
p−1 + τφp−1

t (n)u
n
p−1(t) ∈ K, for all t ∈ [tn

p−1, tn
p ],

and
un

p−1(t) ∈ F (t, xn
p−1) + 1

2n
B a.e. on [tn

p−1, tn
p [.

Choose φ
p−1(n) > max(φp−1

tn
p−1

(n); φ
p−2(n)). Then φ

p−1(n) > T (M+1)
δn

. We set

xn
p := xp(tn

p−1) = xn
p−1 + τφ

p−1 (n)u
n
p−1(tn

p−1) ∈ K.

Then
∥xn

p − xn
p−1∥ = T

φ
p−1(n)∥un

p−1(tn
p−1)∥ ≤ T

φ
p−1(n) (M + 1) ≤ δn,

hence, by (H2),

dH(F (t, xn
p ), F (t, xn

p−1)) ≤ 1
2n+2 , for all t ∈ I.
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By Lemma 3.3, there exists a measurable function fn
p (·) ∈ L1(I, E) such that

fn
p (t) ∈ F (t, xn

p ) and for all t ∈ I,

∥fn
p (t) − fn

p−1(t)∥ ≤ d(fn
p−1(t), F (t, xn

p )) + 1
2n+2 .

Then
∥fn

p (t) − fn
p−1(t)∥ ≤ 1

2n+1 . (4.1)

Put kn = φ
n
(n). Remark that the previous properties are satisfied for kn.

Now, let us define the step functions.
For all n ≥ 1, for all p = 1, 2, . . . , n, for all t ∈ [0, T [, set θn(t) = tn

p−1, whenever

t ∈ [tn
p−1, tn

p [, fn(t) =
n∑

p=1
χ[tn

p−1,tn
p ](t)f

n
p−1(t) and un(t) =

n∑

p=1
χ[tn

p−1,tn
p ](t)u

n
p−1(t).

On each interval [tn
p−1, tn

p ] consider

xn(t) = xn
p−1 +

t∫

tn
p−1

un
p−1(s)ds.

Then 



xn(θn(t)) = xn
p−1 ∈ K, for all t ∈ [0, T [,

ẋn(t) = un(t) ∈ F (t, xn(θkn(t))) + 1
2n

B a.e. on I,

∥un(t) − fn(t)∥ ≤ 1
2n

a.e. on I.

Step 2. The convergence of (xn(·))
By construction for all t ∈ I,

fn(t) ∈ F (t, xn(θkn
(t))).

On the other hand, let t ∈ I and p = 1, 2, . . . , n, by relation (4.1),

∥fn
p (t) − fn

p−1(t)∥ ≤ 1
2n+1 .

Then, by induction,
∥fn

p (t) − f0(t)∥ ≤ p

2n+1 ,

which implies
∥fn(t) − f0(t)∥ ≤ n

2n+1 .

Then

∥fn+1(t) − fn(t)∥ ≤ ∥fn+1(t) − f0(t)∥ + ∥fn(t) − f0(t)∥

≤ n + 1
2n+2 + n

2n+1 ≤ 3(n + 1)
2n+2 .
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Let t ∈ I and (m, n) ∈ N∗ × N∗ with m > n. Then

∥fm(t) − fn(t)∥ ≤ ∥fm(t) − fm−1(t)∥ + ∥fm−1(t) − fm−2(t)∥ . . . ∥fn+1(t) − fn(t)∥

≤ 3m

2m+1 + 3(m − 1)
2m

+ . . . + 3(n + 1)
2n+2

≤ 3
2

( m

2m
+ m − 1

2m−1 + . . . + n + 1
2n+1

)
.

Put vn = n
2n . Then according to a classical argument (the d’Alembert criterion),

the numerical series
∑+∞

i=0 vi converges, hence (Sn) = (
∑n

i=0 vi) is a Cauchy sequence.
Since

∥fm(t) − fn(t)∥ ≤ Sm − Sn,

then (fn(·))n≥1 is a Cauchy sequence in L1(I, E). We denote by f(·) its limit.
Moreover, by relations

xn(t) = x0 +
t∫

0

un(s)ds

and
∥un(t) − fn(t)∥ ≤ 1

2n
, a.e. on I,

it follows that the subsequence (xn(·))n converges almost everywhere on I to an abso-
lutely continuous function, namely x(·).

Recall that
|θkn

(t)) − t| <
T

n

for all n ≥ 1. Since

∥xn(θkn
(t)) − x(t)∥ ≤ ∥xn(θkn

(t)) − xn(t)∥ + ∥xn(t) − x(t)∥

≤
t∫

θkn (t)

(M + 1)ds + ∥xn(t) − x(t)∥,

then
lim

n→∞
xn(θkn(t)) = x(t), for all t ∈ [0, T [.

Hence, by dominated convergence theorem, for all t ∈ I

x(t) = lim
n→∞

xn(t) = lim
n→∞

(
x0 +

t∫

0

un(s)ds
)

= x0 +
t∫

0

f(s)ds,

so f(t) = ẋ(t) a.e. on I.
In addition, for every t ∈ [0, T [ we have xn(θkn(t)) ∈ K. Since K is closed, then

x(t) ∈ K. Moreover, as x(·) is (M + 1)-Lipschitz, then x(t) ∈ K, for all t ∈ [0, T ].
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Furthermore, observe that

d(f(t), F (t, x(t)) ≤ ∥f(t) − fn(t)∥ + dH(F (t, xn(θkn
(t))), F (t, x(t))),

since (fn(·)) converges to f(·) a.e. on [0, T [ and x → F (t, x) is continuous, then
ẋ(t) = f(t) ∈ F (t, x(t)) for a.e. t ∈ I. This completes the proof of Theorem 2.1.
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