A VIABILITY RESULT FOR CARATHÉODORY NON-CONVEX DIFFERENTIAL INCLUSION IN BANACH SPACES

Nabil Charradi and Saïd Sajid

Communicated by P.A. Cojuhari

Abstract. This paper deals with the existence of solutions to the following differential inclusion: $\dot{x}(t) \in F(t,x(t))$ a.e. on [0,T[and $x(t) \in K,$ for all $t \in [0,T],$ where $F:[0,T] \times K \to 2^E$ is a Carathéodory multifunction and K is a closed subset of a separable Banach space E.

Keywords: viability, measurable multifunction, selection, Carathéodory multifunction.

Mathematics Subject Classification: 34A60, 28B20.

1. INTRODUCTION

Let E be a separable Banach space, K a nonempty closed subset of E, T a strictly positive real and put I := [0, T]. Let $F : I \times K \to 2^E$ be a multifunction measurable with respect to the first argument and uniformly continuous with respect to the second argument.

The aim of this work is to establish, for any fixed $x_0 \in K$, the existence of an absolutely continuous function $x(\cdot): I \to K$ satisfying

$$\begin{cases} \dot{x}(t) \in F(t, x(t)) & \text{a.e. on } [0, T[, \\ x(0) = x_0, \\ x(t) \in K & \text{for all } t \in I. \end{cases}$$

$$(1.1)$$

Concerning this subject, we begin with recalling the pioneering work of Haddad [8], where the right-hand side is an upper semi-continuous convex and compact-valued multifunction $x \to F(x)$ in finite-dimensional space, while in [7] an existence result is established for a globally upper semi-continuous multifunction in Hilbert space, though K is convex.

The main improvement is the comparison with previous results on the same subject especially the work, of Duc Ha [6] which was the basis for several papers; see [1,2,11]. It has been proved the existence of solution to the problem (1.1), where $F(\cdot,x)$ is measurable and $F(t,\cdot)$ is m(t)-Lipschitz, $m(\cdot) \in L^1(I,\mathbb{R}^+)$. This result is a multivalued version of Larrieu's work [9]. More precisely, the existence of solutions of (1.1) was given under the following tangency condition:

$$\forall (t,x) \in I \times K \, : \, \liminf_{h \to 0^+} \frac{1}{h} e\bigg(x + \int\limits_t^{t+h} F(s,x) ds, K\bigg) = 0,$$

where $e(\cdot,\cdot)$ denotes the Hausdorff excess and $\int_t^{t+h} F(s,x)ds$ stands for the Aumann integral of the multifunction $t \to F(t,x)$. Note that the convergence to zero of the above tangency condition depend on the t. Here techniques of existence of selections have been introduced, notably a Lemma given by Zhu [13], that will given another proof in this paper.

Different extensions of the result of Duc Ha [6] have been investigated by many authors in the case of functional differential inclusions or semilinear differential inclusions. See Aitalioubrahim [2], Lupulescu and Necula [10–12] and the references therein.

In current literature, regarding the differential inclusion without Lipschitz condition we refer the reader to the work of Fan and Li [5]. They considered the following differential inclusion:

$$\dot{u}(t) \in A(t)u(t) + F(t, u(t)), \tag{1.2}$$

where A(t) is a family of unbounded linear operators generating an evolution operator and $F(t,\cdot)$ is lower semicontinuous. However $\chi(F(t,D)) \leq k(t)\chi(D)$ for every bounded subset D, where χ is the measure of noncompactness and $k(\cdot) \in L^1(I,\mathbb{R}^+)$. Dong and Li [4] have established a viable solution to (1.2) when A(t) = A and F is a Carathéodory single-valued map.

In this paper, we consider the existence of solutions to the problem (1.1) in general situation supposing that the right-hand side $(t, x) \to F(t, x)$ is measurable with respect to the first argument and uniformly continuous with respect to the second argument in the sense that

$$\forall \varepsilon > 0 \,\exists \delta(\varepsilon) > 0 \,\forall (t, x, y) \in I \times K \times K :$$
$$\|x - y\| \le \delta(\varepsilon) \Rightarrow d_H(F(t, x), F(t, y)) \le \varepsilon,$$

where d_H denotes the Hausdorff distance.

This condition is weaker than the one adopted by Duc Ha [6] in the spatial case when the Lipschitz coefficient m(t) is a constant L > 0.

The following case deserves mentioning: F is a time-independent continuous multifunction and K is compact. In this case the above hypothesis is satisfied.

Our approach is based on Euler's method, it consists of constructing a sequence of approximate solutions by using Lebesgue's Differentiation Theorem and selection techniques.

2. NOTATIONS, DEFINITIONS AND THE MAIN RESULT

In all paper, E is a separable Banach space with the norm $\|\cdot\|$. For $x \in E$ and r > 0, let $B(x,r) := \{y \in E : ||y-x|| < r\}$ be an open ball centered at x with radius r and $\overline{B}(x,r)$ be its closure, and put B=B(0,1). For $x\in E$ and for nonempty bounded subsets A, B of E, we denote by $d_A(x)$ or d(x, A) the real value $\inf\{||x - y|| : y \in A\}$,

$$e(A, B) := \sup\{d_B(x) : x \in A\}$$
 and $d_H(A, B) = \max\{e(A, B), e(B, A)\}.$

We denote by $\mathcal{L}(I)$ the σ -algebra of Lebesgue measurable subsets of I, and B(E) is the σ -algebra of Borel subsets of E for the strong topology. A multifunction is said to be measurable if its graph belongs to $\mathcal{L}(I) \otimes B(E)$. For more details on measurability theory, we refer the reader to the book by Castaing and Valadier [3].

Let $F: I \times K \to 2^E$ be a multifunction with nonempty closed values in E. On F we make the following hypotheses:

- (H₁) For each $x \in K$, $t \to F(t, x)$ is measurable.
- (H₂) For all $t \in I$, $x \to F(t,x)$ is uniformly continuous as follows:

$$\forall \varepsilon > 0 \,\exists \delta(\varepsilon) > 0 \,\forall (t, x, y) \in I \times K \times K :$$
$$\|x - y\| \le \delta(\varepsilon) \Rightarrow d_H(F(t, x), F(t, y)) \le \varepsilon.$$

(H₃) There exists M > 0, for all $(t, x) \in I \times K$,

$$||F(t,x)|| := \sup_{z \in F(t,x)} ||z|| \le M.$$

 (H_4) For all $t \in I$ and $x \in K$, for every measurable selection $\sigma(\cdot)$ of the multifunction $t \to F(t,x)$

$$\lim_{h \to 0^+} \inf_{h} \frac{1}{h} d_K \left(x + \int_{t}^{t+h} \sigma(s) ds \right) = 0,$$

which is equivalent to

$$\liminf_{h \to 0^+} \frac{1}{h} e\left(x + \int_{t}^{t+h} F(s, x) ds, K\right) = 0.$$

Let $x_0 \in K$. Under hypotheses (H_1) – (H_4) we shall prove the following result:

Theorem 2.1. There exists an absolutely continuous function $x(\cdot): I \to E$ such that

$$\begin{cases} \dot{x}(t) \in F(t,x(t)) & \textit{a.e. on } [0,T[,\\ x(0)=x_0,\\ x(t) \in K, & \textit{for all } t \in I. \end{cases}$$

3. PRELIMINARY RESULTS

To begin with, let us recall the following lemmas that will be used in the sequel.

Lemma 3.1 ([13]). Let Ω be a nonempty set in E. Let $G : [a,b] \times \Omega \to 2^E$ be a multifunction with nonempty closed values satisfying:

- (i) for every $x \in \Omega$, $G(\cdot, x)$ is measurable on [a, b],
- (ii) for every $t \in [a, b]$, $G(t, \cdot)$ is (Hausdorff) continuous on Ω .

Then for any measurable function $x(\cdot):[a,b]\to\Omega$ the multifunction $G(\cdot,x(\cdot))$ is measurable on [a,b].

Lemma 3.2 ([3]). Let $R: I \to 2^E$ be a measurable multifunction with nonempty closed values in E. Then R admits a measurable selection: there exists a measurable function $r: I \to E$ that is $r(t) \in R(t)$ for all $t \in I$.

We need also the following lemma, due to Zhu [13], established for a multifunction (not necessarily closed values) in Banach spaces (not necessarily separable). However, the result was proven for almost everywhere on I, because the measurability of a multifunction Γ adopted by this author is defined as follows: there exists a sequence $(\sigma_n(\cdot))_{n\in\mathbb{N}}$ of measurable functions that is $\Gamma(t) \subset \overline{\{\sigma_n(t) : n \in \mathbb{N}\}}$ a.e.on I. Here, we are concerned with this Lemma in the context of measurable closed-values multifunction in separable Banach spaces. This result is obtained at every element of I by a different method.

Lemma 3.3. Let $G: I \to 2^E$ be a measurable multifunction with nonempty closed values and $z(\cdot): I \to E$ a measurable function. Then for any positive measurable function $r(\cdot): I \to \mathbb{R}^+$, there exists a measurable selection $g(\cdot)$ of G such that for all $t \in I$,

$$||q(t) - z(t)|| \le d(z(t), G(t)) + r(t).$$

Proof. Let $t \in I$. By the characterization of the lower bound, there exists $x \in G(t)$ such that

$$||x - z(t)|| \le d(z(t), G(t)) + r(t).$$

Consider the following multifunction

$$t \to Q(t) = \{ x \in E : ||x - z(t)|| \le d(z(t), G(t)) + r(t) \}.$$

Obviously, Q is measurable with nonempty closed values. On the other hand, since G is measurable with closed values, then $Q(t) \cap G(t)$ is a measurable multifunction with nonempty closed values, hence by Lemma 3.2, admits a measurable selection $t \to g(t)$. This completes the proof.

4. PROOF OF THE MAIN RESULT

The proof is based on two steps. It consists of the construction of a sequence of approximants in the first one, while in the second step we establish the convergence of such approximate solutions.

Step 1. Construction of approximants.

For each integer $n > \max(T; 1)$, put $\tau_n := \frac{T}{n}$ and consider the following partition of the interval I with the points

$$t_i^n = i\tau_n, \quad i = 0, 1, \dots, n.$$

Remark that $I = \bigcup_{i=0}^{n-1} [t_i^n, t_{i+1}^n]$. Since $t \to F(t, x_0)$ is measurable with closed values, then by Lemma 3.2, there exists a measurable function $f_0(\cdot)$ such that for all $f_0(t) \in F(t, x_0)$. Note that by $(H_3), f_0(\cdot) \in L^1(I, E)$.

For all $n \in \mathbb{N}^*$, put $f_0^n(\cdot) = f_0(\cdot)$. We shall prove the following theorem:

Theorem 4.1. For all $n \in \mathbb{N}^*$, there exist $\varphi_0(n) \in \mathbb{N}^*$, $x_1^n \in K$, $u_0^n(\cdot)$, $f_1^n(\cdot) \in L^1(I, E)$ such that for all $t \in I$,

$$f_1^n(t) \in F(t, x_1^n), \quad ||f_1^n(t) - f_0^n(t)|| \le \frac{1}{2^{n+1}},$$

and for almost every $t \in I$,

$$u_0^n(t) \in F(t, x_0) + \frac{1}{2^n} \overline{B}, \quad ||u_0^n(t) - f_0(t)|| \le \frac{1}{2^n},$$

and

$$x_1^n = x_0 + \tau_{\varphi_0(n)} u_0^n(0) \in K.$$

Proof. By (H_4) , for all $t \in [0, T[$,

$$\liminf_{n \to +\infty} \frac{1}{\tau_n} d_K \left(x_0 + \int_t^{t+\tau_n} f_0(s) ds \right) = 0.$$

Then for all $t \in [0, T[$, there exists an integer $\varphi_t(n) > n$ such that

$$\frac{1}{\tau_{\varphi_t(n)}}d_K\bigg(x_0+\int\limits_{-t}^{t+\tau_{\varphi_t(n)}}f_0(s)ds\bigg)\leq \frac{1}{2^{n+2}}.$$

Hence, by the characterization of the lower bound, there exists $x_1(t) \in K$ such that

$$\frac{1}{\tau_{\varphi_t(n)}} \left\| x_1(t) - x_0 - \int_t^{t + \tau_{\varphi_t(n)}} f_0(s) ds \right\| \le \frac{\tau_{\varphi_t(n)}}{2^{n+2}} + \frac{1}{2^{n+2}}.$$

Then

$$\left\|\frac{x_1(t)-x_0}{\tau_{\varphi_t(n)}}-\frac{1}{\tau_{\varphi_t(n)}}\int\limits_t^{t+\tau_{\varphi_t(n)}}f_0(s)ds\right\|\leq \frac{1}{2^{n+1}}.$$

On the other hand, in view of Lebesgue's Differentiation Theorem, we can suppose

$$\left\| \frac{1}{\tau_{\varphi_t(n)}} \int_t^{t+\tau_{\varphi_t(n)}} f_0(s) ds - f_0(t) \right\| \le \frac{1}{2^{n+1}} \quad \text{a.e. on } I.$$

Therefore,

$$\left\| \frac{x_1(t) - x_0}{\tau_{\varphi_t(n)}} - f_0(t) \right\| \le \frac{1}{2^n}$$
 a.e. on I .

Set

$$u_0^n(t) = \frac{x_1(t) - x_0}{\tau_{\varphi_t(n)}}.$$

Then for all $t \in [0, T[$,

$$x_1(t) = x_0 + \tau_{\varphi_*(n)} u_0^n(t) \in K,$$

and

$$||u_0^n(t) - f_0(t)|| \le \frac{1}{2n}$$
 a.e. on I

from which we deduce that

$$u_0^n(t) \in F(t, x_0) + \frac{1}{2^n}\overline{B}.$$

Particularly

$$x_0 + \tau_{\varphi_*(n)} u_0^n(t) \in K$$
, for all $t \in [t_0^n, t_1^n]$,

and

$$u_0^n(t) \in F(t, x_0) + \frac{1}{2^n} \overline{B}$$
 a.e. on $[t_0^n, t_1^n]$.

Let $\delta_n = \delta(\frac{1}{2^{n+2}})$ be the real given by (H₂). Choose $\varphi_0(n) > \frac{T(M+1)}{\delta_n}$, and set

$$x_1^n := x_1(t_0^n) = x_0 + \tau_{\varphi_0(n)} u_0^n(0) \in K.$$

Since

$$||x_1^n - x_0|| = \frac{T}{\varphi_0(n)} ||u_0^n(0)|| \le \frac{T}{\varphi_0(n)} (M+1) \le \delta_n,$$

then, by (H_2) ,

$$d_H(F(t, x_1^n), F(t, x_0)) \le \frac{1}{2^{n+2}}, \text{ for all } t \in I,$$

thus

$$d(f_0(t), F(t, x_1^n)) \le \frac{1}{2^{n+2}}, \text{ for all } t \in I.$$

In view of Lemma 3.3, there exists a measurable function $f_1^n(\cdot) \in L^1(I, E)$ such that $f_1^n(t) \in F(t, x_1^n)$ and for all $t \in I$,

$$||f_1^n(t) - f_0(t)|| \le d(f_0(t), F(t, x_1^n) + \frac{1}{2^{n+2}} \le \frac{1}{2^{n+1}}.$$

By induction, for $p \in \{2, \dots, n\}$, assume that have been constructed $\varphi_{p-2}(n) \in \mathbb{N}^*$, $x_{p-1}^n \in K$, $f_{p-1}^n(t) \in F(t, x_{p-1}^n)$ and $u_{p-2}^n(\cdot)$, satisfying the following relations:

$$u_{p-2}^n(t) \in F(t, x_{p-2}^n) + \frac{1}{2^n}\overline{B}$$
 a.e. on $[t_{p-2}^n, t_{p-1}^n]$,

$$||u_{p-2}^n(t) - f_{p-2}^n(t)|| \le \frac{1}{2^n}$$
 a.e. on $[t_{p-2}^n, t_{p-1}^n]$,

$$x_{p-1}^n := x_p(t_{p-2}^n) = x_{p-2}^n + \tau_{\varphi_{p-2}(n)} u_{p-2}^n(t_{p-2}^n) \in K,$$

and

$$||f_{p-1}^n(t) - f_{p-2}^n(t)|| \le \frac{1}{2^{n+1}}, \text{ for all } t \in I.$$

Let us define x_p^n , $f_p^n(\cdot)$, $u_{p-1}^n(\cdot)$ and $\varphi_{p-1}(n)$, that is, $\varphi_{p-1}(n) > \varphi_{p-2}(n)$. Indeed, for all $t \in I$, $f_{p-1}^n(t) \in F(t, x_{p-1}^n)$. Then, by (H₄),

$$\liminf_{n\to +\infty}\frac{1}{\tau_n}d_K\bigg(x_{p-1}^n+\int\limits_1^{t+\tau_n}f_{p-1}^n(s)ds\bigg)=0,\quad \text{for all }t\in [0,T[.$$

Then for all $t \in [0, T[$, there exists $\varphi_t^{p-1}(n) \in \mathbb{N}$ such that $\varphi_t^{p-1}(n) > \varphi_t^{p-2}(n)$,

$$\frac{1}{\tau_{\varphi_t^{p-1}(n)}} d_K \bigg(x_{p-1}^n + \int\limits_t^{t+\tau_{\varphi_t^{p-1}(n)}} f_{p-1}^n(s) ds \bigg) \leq \frac{1}{2^{n+2}},$$

Hence, by the characterization of the lower bound, there exists $x_p(t) \in K$ such that

$$\frac{1}{\tau_{\varphi_t^{p-1}(n)}} \left\| x_p(t) - x_{p-1}^n - \int_t^{t+\tau_{\varphi_t^{p-1}(n)}} f_{p-1}^n(s) ds \right\| \le \frac{\tau_{\varphi_t^{p-1}(n)}}{2^{n+2}} + \frac{1}{2^{n+2}}.$$

Then

$$\left\| \frac{x_p(t) - x_{p-1}^n}{\tau_{\varphi_t^{p-1}(n)}} - \frac{1}{\tau_{\varphi_t^{p-1}(n)}} \int_t^{t+\tau_{\varphi_t^{p-1}(n)}} f_{p-1}^n(s) ds \right\| \le \frac{1}{2^{n+1}}.$$

On the other hand, in view of Lebesgue's Differentiation Theorem, we can suppose

$$\left\|\frac{1}{\tau_{\varphi_t^{p-1}(n)}}\int\limits_t^{t+\tau_{\varphi_t^{p-1}(n)}} \int\limits_t^n f_{p-1}^n(s) ds - f_{p-1}^n(t)\right\| \leq \frac{1}{2^{n+1}} \quad \text{a.e. on } I.$$

Therefore,

$$\left\| \frac{x_p(t) - x_{p-1}^n}{\tau_{\varphi_*^{p-1}(n)}} - f_{p-1}^n(t) \right\| \le \frac{1}{2^n} \quad \text{a.e. on } I.$$

Set

$$u_{p-1}^n(t) = \frac{x_p(t) - x_{p-1}^n}{\tau_{\varphi_{+}^{p-1}(n)}},$$

then for all $t \in [0, T[$

$$x_p(t) = x_{p-1}^n + \tau_{\varphi_*^{p-1}(n)} u_{p-1}^n(t) \in K,$$

and

$$||u_{p-1}^n(t) - f_{p-1}^n(t)|| \le \frac{1}{2^n}$$
 a.e. on I ,

from which, we get

$$u_{p-1}^n(t) \in F(t, x_{p-1}^n) + \frac{1}{2^n} \overline{B}.$$

Then we have

$$x_{p-1}^n + \tau_{\varphi_*^{p-1}(n)} u_{p-1}^n(t) \in K$$
, for all $t \in [t_{p-1}^n, t_p^n]$,

and

$$u^n_{p-1}(t) \in F(t,x^n_{p-1}) + \frac{1}{2^n}\overline{B} \quad \text{a.e. on } [t^n_{p-1},t^n_p[.$$

Choose $\varphi_{{}_{p-1}}(n)>\max(\varphi_{{}_{p-1}}^{p-1}(n);\varphi_{{}_{p-2}}(n)).$ Then $\varphi_{{}_{p-1}}(n)>\frac{T(M+1)}{\delta_n}.$ We set

$$x_p^n:=x_p(t_{p-1}^n)=x_{p-1}^n+\tau_{\varphi_{p-1}(n)}u_{p-1}^n(t_{p-1}^n)\in K.$$

Then

$$||x_p^n - x_{p-1}^n|| = \frac{T}{\varphi_{p-1}(n)} ||u_{p-1}^n(t_{p-1}^n)|| \le \frac{T}{\varphi_{p-1}(n)} (M+1) \le \delta_n,$$

hence, by (H_2) ,

$$d_H(F(t, x_p^n), F(t, x_{p-1}^n)) \le \frac{1}{2^{n+2}}, \text{ for all } t \in I.$$

By Lemma 3.3, there exists a measurable function $f_p^n(\cdot) \in L^1(I, E)$ such that $f_p^n(t) \in F(t, x_p^n)$ and for all $t \in I$,

$$||f_p^n(t) - f_{p-1}^n(t)|| \le d(f_{p-1}^n(t), F(t, x_p^n)) + \frac{1}{2^{n+2}}.$$

Then

$$||f_p^n(t) - f_{p-1}^n(t)|| \le \frac{1}{2^{n+1}}.$$
 (4.1)

Put $k_n = \varphi_n(n)$. Remark that the previous properties are satisfied for k_n . Now, let us define the step functions.

For all $n \ge 1$, for all p = 1, 2, ..., n, for all $t \in [0, T[$, set $\theta_n(t) = t_{p-1}^n$, whenever

$$t \in [t^n_{p-1}, t^n_p[, \, f_n(t) = \sum_{p=1}^n \chi_{[t^n_{p-1}, t^n_p]}(t) f^n_{p-1}(t) \text{ and } u_n(t) = \sum_{p=1}^n \chi_{[t^n_{p-1}, t^n_p]}(t) u^n_{p-1}(t).$$

On each interval $[t_{p-1}^n, t_p^n]$ consider

$$x_n(t) = x_{p-1}^n + \int_{t_{p-1}^n}^t u_{p-1}^n(s) ds.$$

Then

$$\begin{cases} x_n(\theta_n(t)) = x_{p-1}^n \in K, & \text{for all } t \in [0, T[, \\ \dot{x}_n(t) = u_n(t) \in F(t, x_n(\theta_{k_n}(t))) + \frac{1}{2^n} \overline{B} & \text{a.e. on } I, \\ \|u_n(t) - f_n(t)\| \le \frac{1}{2^n} & \text{a.e. on } I. \end{cases}$$

Step 2. The convergence of $(x_n(\cdot))$ By construction for all $t \in I$,

$$f_n(t) \in F(t, x_n(\theta_{k_n}(t))).$$

On the other hand, let $t \in I$ and p = 1, 2, ..., n, by relation (4.1),

$$||f_p^n(t) - f_{p-1}^n(t)|| \le \frac{1}{2^{n+1}}.$$

Then, by induction,

$$||f_p^n(t) - f_0(t)|| \le \frac{p}{2^{n+1}}$$

which implies

$$||f_n(t) - f_0(t)|| \le \frac{n}{2^{n+1}}.$$

Then

$$||f_{n+1}(t) - f_n(t)|| \le ||f_{n+1}(t) - f_0(t)|| + ||f_n(t) - f_0(t)||$$
$$\le \frac{n+1}{2^{n+2}} + \frac{n}{2^{n+1}} \le \frac{3(n+1)}{2^{n+2}}.$$

Let $t \in I$ and $(m, n) \in \mathbb{N}^* \times \mathbb{N}^*$ with m > n. Then

$$||f_m(t) - f_n(t)|| \le ||f_m(t) - f_{m-1}(t)|| + ||f_{m-1}(t) - f_{m-2}(t)|| \dots ||f_{n+1}(t) - f_n(t)||$$

$$\le \frac{3m}{2^{m+1}} + \frac{3(m-1)}{2^m} + \dots + \frac{3(n+1)}{2^{n+2}}$$

$$\le \frac{3}{2} \left(\frac{m}{2^m} + \frac{m-1}{2^{m-1}} + \dots + \frac{n+1}{2^{n+1}} \right).$$

Put $v_n = \frac{n}{2^n}$. Then according to a classical argument (the d'Alembert criterion), the numerical series $\sum_{i=0}^{+\infty} v_i$ converges, hence $(S_n) = (\sum_{i=0}^n v_i)$ is a Cauchy sequence. Since

$$||f_m(t) - f_n(t)|| \le S_m - S_n,$$

then $(f_n(\cdot))_{n\geq 1}$ is a Cauchy sequence in $L^1(I,E)$. We denote by $f(\cdot)$ its limit. Moreover, by relations

$$x_n(t) = x_0 + \int_0^t u_n(s)ds$$

and

$$||u_n(t) - f_n(t)|| \le \frac{1}{2^n}$$
, a.e. on I ,

it follows that the subsequence $(x_n(\cdot))_n$ converges almost everywhere on I to an absolutely continuous function, namely $x(\cdot)$.

Recall that

$$|\theta_{k_n}(t)) - t| < \frac{T}{n}$$

for all $n \geq 1$. Since

$$||x_n(\theta_{k_n}(t)) - x(t)|| \le ||x_n(\theta_{k_n}(t)) - x_n(t)|| + ||x_n(t) - x(t)||$$

$$\le \int_{\theta_{k_n}(t)}^t (M+1)ds + ||x_n(t) - x(t)||,$$

then

$$\lim_{n \to \infty} x_n(\theta_{k_n}(t)) = x(t), \quad \text{for all } t \in [0, T[.$$

Hence, by dominated convergence theorem, for all $t \in I$

$$x(t) = \lim_{n \to \infty} x_n(t) = \lim_{n \to \infty} \left(x_0 + \int_0^t u_n(s) ds \right) = x_0 + \int_0^t f(s) ds,$$

so $f(t) = \dot{x}(t)$ a.e. on I.

In addition, for every $t \in [0, T[$ we have $x_n(\theta_{k_n}(t)) \in K$. Since K is closed, then $x(t) \in K$. Moreover, as $x(\cdot)$ is (M+1)-Lipschitz, then $x(t) \in K$, for all $t \in [0, T]$.

Furthermore, observe that

$$d(f(t), F(t, x(t))) \le ||f(t) - f_n(t)|| + d_H(F(t, x_n(\theta_{k_n}(t))), F(t, x(t))),$$

since $(f_n(\cdot))$ converges to $f(\cdot)$ a.e. on [0,T[and $x \to F(t,x)$ is continuous, then $\dot{x}(t) = f(t) \in F(t,x(t))$ for a.e. $t \in I$. This completes the proof of Theorem 2.1.

REFERENCES

- M. Aitalioubrahim, On viability result for first order functional differential inclusions, Mat. Vesnik 70 (2018), no. 4, 283–291.
- M. Aitalioubrahim, Viability result for semilinear functional differential inclusions in Banach spaces, Carpathian Math. Publ. 13 (2021), no. 2, 395–404.
- [3] C. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, vol. 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
- [4] Q. Dong, G. Li, Viability for semilinear differential equations with infinite delay, Mathematics 2016, 4(4), 64.
- [5] Z. Fan, G. Li, Existence results for semilinear differential inclusions, Bull. Austral. Math. Soc. 76 (2007), no. 2, 227–241.
- [6] T.X.D. Ha, Existence of viable solutions for nonconvex valued differential inclusions in Banach spaces, Portugal. Math. 52 (1995), Fasc. 2, 241–250.
- [7] G. Haddad, Monotone trajectories for functional differential inclusions, J. Diff. Equations 42 (1981), no. 1, 1–24.
- [8] G. Haddad, Monotone trajectories of differential inclusions and functional differential inclusions with memory, Israel J. Math. 39 (1981), 83–100.
- [9] M. Larrieu, Invariance d'un fermé pour un champ de vecteurs de Carathéodory, Pub. Math. de Pau, 1981.
- [10] V. Lupulescu, M. Necula, Viability and local invariance for non-convex semilinear differential inclusions, Nonlinear Funct. Anal. Appl. 9 (2004), no. 3, 495–512.
- [11] V. Lupulescu, M. Necula, A viability result for nonconvex semilinear functional differential inclusions, Discuss. Math. Differ. Incl. Control Optim. 25 (2005), 109–128.
- [12] V. Lupulescu, M. Necula, A viable result for nonconvex differential inclusions with memory, Port. Math. (N.S.) 63 (2006), no. 3, 335–349.
- [13] Q.J. Zhu, On the solution set of differential inclusions in Banach space, J. Differential Equations 93 (1991), no. 2, 213–237.

Nabil Charradi charradi84@gmail.com

https://orcid.org/0000-0002-6382-8396

University Hassan II of Casablanca Department of Mathematics, FSTM Mohammedia, 28820, Morocco

Saïd Sajid (corresponding author) saidsajid@hotmail.com

https://orcid.org/0000-0002-4377-5928

University Hassan II of Casablanca Department of Mathematics, FSTM Mohammedia, 28820, Morocco

Received: March 17, 2023. Revised: April 24, 2023. Accepted: May 14, 2023.