Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this article, we utilize the finite Sine-Fourier transform and the Laplace transform for solving fractional partial differential equations with regularized Hilfer-Prabhakar derivative. These transforms are used to get analytical solutions for the time fractional heat conduction equation (TFHCE) with the regularized Hilfer-Prabhakar derivative associated with heat absorption in spherical coordinates. Two cases of Dirichlet boundary conditions are considered by obtaining an analytical solution in each case. The effect of the parameters of the regularized Hilfer-Prabhakar derivative on the heat transfer inside the sphere is discussed using some figures.
Rocznik
Tom
Strony
27--37
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
- Mathematics and Engineering Physics Department, Engineering Faculty Mansoura University, Mansoura, Egypt
autor
- Department of Mathematics, Faculty of Science, New Mansoura University New Mansoura City, Egypt
- Mathematics and Engineering Physics Department, Engineering Faculty Mansoura University, Mansoura, Egypt
autor
- Mathematics and Engineering Physics Department, Engineering Faculty Mansoura University, Mansoura, Egypt
autor
- Mathematics and Engineering Physics Department, Engineering Faculty Mansoura University, Mansoura, Egypt
Bibliografia
- [1] Qureshi, S., & Jan, R. (2021). Modeling of measles epidemic with optimized fractional order under Caputo differential operator. Chaos, Solitons & Fractals, 145, 110766.
- [2] Qureshi, S., Yusuf, A., & Aziz, S. (2021). Fractional numerical dynamics for the logistic population growth model under Conformable Caputo: a case study with real observations. Physica Scripta, 96(11), 114002.
- [3] Qureshi, S., & Yusuf, A. (2019). Fractional derivatives applied to MSEIR problems: Comparative study with real world data. The European Physical Journal Plus, 134(4), 1-13.
- [4] Qureshi, S. (2020). Real life application of Caputo fractional derivative for measles epidemiological autonomous dynamical system. Chaos, Solitons & Fractals, 134, 109744.
- [5] Mustapha, U.T., Qureshi, S., Yusuf, A., & Hincal, E. (2020). Fractional modeling for the spread of Hookworm infection under Caputo operator. Chaos, Solitons & Fractals, 137, 109878.
- [6] Viñales, A.D., & Desposito, M.A. (2007). Anomalous diffusion induced by a Mittag-Leffler correlated noise. Physical Review E, 75(4), 042102.
- [7] Gabr, A., Abdel Kader, A.H., & Abdel Latif, M.S. (2021). The effect of the parameters of the generalized fractional derivatives on the behavior of linear electrical circuits. International Journal of Applied and Computational Mathematics, 7(6), 1-14.
- [8] Abdel Kader, A.H., Abdel Latif, M.S., & Baleanu, D. (2021). Representation of exact solutions of ψ-fractional nonlinear evolution equations using two different approaches. Partial Differential Equations in Applied Mathematics, 4, 100068.
- [9] Elhadedy, H., Abdel Kader, A.H., & Abdel Latif, M.S. (2021). Investigating heat conduction in a sphere with heat absorption using generalized Caputo fractional derivative. Heat Transfer, 50(7), 6955-6963.
- [10] Metzler, R., & Klafter, J. (2000). The random walk's guide to anomalous diffusion: a fractional dynamics approach. Physics Reports, 339(1), 1-77.
- [11] Metzler, R., Schick, W., Kilian, H.G., & Nonnenmacher, T.F. (1995). Relaxation in filled polymers: a fractional calculus approach. The Journal of Chemical Physics, 103(16), 7180-7186.
- [12] Ahmad, B., Nieto, J.J., Alsaedi, A., & El-Shahed, M. (2012). A study of nonlinear Langevin equation involving two fractional orders in different intervals. Nonlinear Analysis: Real World Applications, 13(2), 599-606.
- [13] Kilbas, A., Srivastava, H.M., & Trujillo, J.J. (2006). Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies. Amsterdam: Elsevier Science B.V.
- [14] D'Ovidio, M., & Polito, F. (2018). Fractional diffusion-telegraph equations and their associated stochastic solutions. Theory of Probability & its Applications, 62(4), 552-574.
- [15] Garra, R., Gorenflo, R., Polito, F., & Tomovski, Z. (2014). Hilfer-Prabhakar derivatives and some applications. Applied Mathematics and Computation, 242, 576-589.
- [16] Sandev, T., & Tomovski, Z. (2019). Fractional Equations and Models. Springer Nature, Switzerland.
- [17] Giusti, A., & Colombaro, I. (2018). Prabhakar-like fractional viscoelasticity. Communications in Nonlinear Science and Numerical Simulation, 56, 138-143.
- [18] Abdel Latif, M., Elsaid, A., & Maneea, M. (2016). Similarity solutions of fractional order heat equations with variable coefficients. Miskolc Mathematical Notes, 17(1), 245-254.
- [19] Elsaid, A., Abdel Latif, M.S., & Maneea, M. (2016). Similarity solutions for multiterm time-fractional diffusion equation. Advances in Mathematical Physics, 2016, 7304659.
- [20] Abdel Latif, M. S., Abdel Kader, A. H., & Baleanu, D. (2020). The invariant subspace method for solving nonlinear fractional partial differential equations with generalized fractional derivatives. Advances in Difference Equations, 2020(1), 1-13.
- [21] Abdel Kader, A.H., Abdel Latif, M.S., & Baleanu, D. (2021). Some exact solutions of a variable coefficients fractional biological population model. Mathematical Methods in the Applied Scinces, 44, 4701-4714.
- [22] Povstenko, Y., & Klekot, J. (2018). Fractional heat conduction with heat absorption in a sphere under Dirichlet boundary condition. Computational and Applied Mathematics, 37(4), 4475-4483.
- [23] Jarad, F., & Abdeljawad, T. (2018). A modified Laplace transform for certain generalized fractional operators. Results in Nonlinear Analysis, 1, 88-98.
- [24] Singh, Y., Kumar, D., Modi, K., & Gill, V. (2020). A new approach to solve Cattaneo-Hristov diffusion model and fractional diffusion equations with Hilfer-Prabhakar derivative. AIMS Mathematics, 5(2), 843-855.
- [25] Sarwar, N., Asjad, M. I., Sitthiwirattham, T., Patanarapeelert, N., & Muhammad, T. (2021). A Prabhakar fractional approach for the convection flow of Casson fluid across an oscillating surface based on the generalized Fourier law. Symmetry, 13(11), 2039.
- [26] Garrappa, R., Mainardi, F., & Guido, M. (2016). Models of dielectric relaxation based on completely monotone functions. Fractional Calculus and Applied Analysis, 19(5), 1105-1160.
- [27] Garrappa, R. (2016). Grünwald-Letnikov operators for fractional relaxation in Havriliak-Negami models. Communications in Nonlinear Science and Numerical Simulation, 38, 178-191.
- [28] Colombaro, I., Giusti, A., & Vitali, S. (2018). Storage and dissipation of energy in Prabhakar viscoelasticity. Mathematics, 6(2), 15.
- [29] Bulavatsky, V.M. (2017). Mathematical modeling of fractional differential filtration dynamics based on models with Hilfer-Prabhakar derivative. Cybernetics and Systems Analysis, 53(2), 204-216.
- [30] Sandev, T. (2017). Generalized Langevin equation and the Prabhakar derivative. Mathematics, 5(4), 66.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f9b6e69-dac2-45bd-b8ba-fa2f93288822