PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Magnetorheological fluids behaviour in oscillatory compression squeeze: experimental testing and analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article deals with experimental testing of magnetorheological fluid (MRF) behaviour in the oscillatory squeeze mode. The authors investigate and analyse the influence of excitation frequency and magnetic field density level on axial force in MRFs that differ in particle volume fraction. The results show that, under certain conditions, the phenomenon of self-sealing can occur as a result of the magnetic field gradient and a vacuum in the working gap of the system.
Rocznik
Strony
221--225
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering and Robotics, Department of Machine Design and Technology, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Cracow, Poland
  • Faculty of Mechanical Engineering and Robotics, Department of Machine Design and Technology, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Cracow, Poland
  • Faculty of Mechanical Engineering and Robotics, Department of Process Control, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Cracow, Poland
Bibliografia
  • 1. Chengye L., Fengyan Y., Kejun J. (2011), Design and finite element analysis of magnetic circuit for disk MRF brake, Advanced Materials Research, 181-182, 22–527.
  • 2. Farjoud A., Vahdati N., Fah Y. (2008), MR-fluid yield surface determination in disc-type MR rotary brakes, Smart Materials and Structures, 17(3), 1–8.
  • 3. Farjoud A., Craft M., Burke W., Ahmadian M. (2011), Experimental investigation of MR squeeze mounts, Journal of Intelligent Material Systems and Structures, 22, 1645–1652.
  • 4. Guo C, Gong X, Xuan S, Zong L and Peng C. (2012), Normal forces of magnetorheological fluids under oscillatory shear, J. Magn. Magn. Mater, 324, 1218.
  • 5. Guo C., Gong X., Xuan S., Yan Q. and Ruan X. (2013), Squeeze Squeeze behavior of magnetorheological fluids under constant volume and uniform magnetic field, Smart Materials and Structures, 22(4), 045020.
  • 6. Gstöttenbauer N., Kainz A, Manhartsgruber B. (2008), Experimental and numerical studies of squeeze mode behaviour of magnetic fluid, Proc. IMechE Part C, J. Mechanical Engineering Science, 222(12), 2395-2407
  • 7. Guldbakke J. M., Hesselbach, J. (2006), Development of bearings and a damper based on magnetically controllable fluids, J. Phys., Condens. Matter, 18(38), 2959–2972.
  • 8. Gołdasz J., Sapiński B. (2011), Model of a squeeze mode magnetorheological mount, Solid State Phenomena, 177, 116–124.
  • 9. Goncalves F.D., Carlson J.D. (2009) An alternate operation mode for MR fluids – magnetic gradient pinch, Journal of Physics, Conference Series, 149(1), 012050.
  • 10. Horak W. Sapiński B., Szczęch M. (2017), Analysis of force in MR fluids during oscillatory compression squeeze, Acta Mechanica et Automatica, 11 (1), 64–68.
  • 11. Horak W. (2018) Modeling of magnetorheological fluid in quasi-static squeeze flow mod, Smart Materials and Structures, 27 (6), 065022.
  • 12. Kubík M., Macháček O., Strecker Z., Roupec, J, Mazůrek I. (2017), Design and testing of magnetorheological valve with fast force response time and great dynamic force range, Smart Material and Structures, 26(4), 047002.
  • 13. Kuzhir P., López-López M. T., Vertelov G., Pradille C., Bossis G. (2008), Oscillatory squeeze flow of suspensions of magnetic polymerized chains, J. Phys., Condens. Matter, 20204132.
  • 14. Laun H.M., Gabriel C., Schmidt G. (2008), Primary and secondary normal stress differences of a magnetorheological fluid (MRF) up to magnetic flux densities of 1 T, Journal of Non-Newtonian Fluid Mechanic, 148(1), 47-56.
  • 15. Liu W., Luo Y., Yang B., Lu W. (2019), Design and Mechanical Model Analysis of Magnetorheological Fluid Damper, American Journal of Mechanics and Applications, 4(1), 15-19.
  • 16. Mazlan S. (2007), The performance of magnetorheological fluid in squeeze mode, Smart Materials and Structures, 16(5), 1678-1682.
  • 17. Szczęch M., Horak W. (2018), Analysis of the magnetic field distribution in the parallel plate rheometer measuring system, Tribologia, 49(2),117-122.
  • 18. Tao R. (2011), Super-strong magnetorheological fluids, Journal of Physics: Condensed Matter, 13(50), 979–999.
  • 19. Wang N., Liu X., Zhang X., (2019), Squeeze-Strengthening Effect of Silicone Oil-Based Magnetorheological Fluid with Nanometer Fe₃O₄ Addition in High-Torque Magnetorheological Brake, Journal of Nanoscience and Nanotechnology, 1, 19(5), 2633-2639.
  • 20. Zhang X. J., Farjud A., Ahmadian M., Guo K. H., Craft M. (2011), Dynamic Testing and Modelling of an MR Squeeze Mount, Journal of Intelligent Material Systems and Structures, 22, 1717-1728.
Uwagi
This work is supported by AGH University of Science and Technology under research programs No. 16.16.130.942.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f9b548a-64c7-4432-a7d0-61d176a36333
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.