PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling of the Aeration System of a Sequencing Batch Reactor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of modern methods as well as modeling and simulation tools in the design of bioreactors allows for the analysis of the flow phenomena in a short period of time without the need of physical model preparation, and thus for the optimization of existing solutions. The article presents the simulations of the aeration process in an SBR-type bioreactor, realized by means of computational fluid dynamics (CFD) and ANSYS 12.1 software. The subject of the analysis was a diffuser of own design. The Design Modeler 12.1 module was used for the preparation of geometry representing the analyzed design, and the discretization of the continuous domain was carried out with the ANSYS Meshing 12.1 tool. The ANSYS Fluent 6.3 solver was used For model calculations. On the basis of the results obtained from the conducted simulations, it is possible to predict the parameters which will increase efficiency and effectiveness without the need to build a real set of prototype models of aeration systems. The results obtained indicate that an increase in the aeration velocity results in a decrease in the minimum Y-axis velocity for both the mixture and air. The observed differences are caused by the shape of the geometric model and the velocity of the air outlet through the openings, which affects the hydraulic process in the chamber. These processes affect both the amount of oxygen dissolved in the bioreactor and the behavior of the suspension in volume. The turbulence intensity during the aeration process is concerned mainly in the range from 3.9 to 8.7% and is comparable with the average values of turbulence degree obtained by other researchers. The air bubble diameter ranged from 0.3 to 4.5 mm, in the case of aeration velocity 5.68 cm/s, a significant part of the chamber were air bubbles with a diameter of 2.6 to 3.9 mm, i.e. they were not the limit values.
Słowa kluczowe
Rocznik
Strony
249--256
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Lublin University of Technology, Faculty of Environmental Engineering, Nadbystrzycka 40B, 20-618 Lublin, Poland
  • Lublin University of Technology, Faculty of Environmental Engineering, Nadbystrzycka 40B, 20-618 Lublin, Poland
  • Lublin University of Technology, Faculty of Environmental Engineering, Nadbystrzycka 40B, 20-618 Lublin, Poland
  • Lublin University of Technology, Faculty of Fundamentals of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland
autor
  • Schmalhausen Institute of Zoology National Academy of Sciences of Ukraine, B. Khmelnitsky 15, 01030 Kyiv, Ukraine
  • Lublin University of Technology, Faculty of Environmental Engineering, Nadbystrzycka 40B, 20-618 Lublin, Poland
Bibliografia
  • 1. Alizadeh M., Sadrameli S.M. 2018. Numerical modeling and optimization of thermal comfort in building: Central composite design and CFD simulation. Energ. Build. 164, 187–202.
  • 2. Babko R., Kuzmina T., Jaromin-Gleń K., Bieganowski A. 2014. Bioindication assessment of activated sludge adaptation in lab-scale experiment. Ecol Chem Eng. ser. S, 21(4), 605–616.
  • 3. Babko R., Jaromin-Gleń K., Łagód G., Danko, Y., Kuzmina T., Pawłowska M., Pawłowski A. 2017. Short-term Influence of Two Types of Drilling Fluids on Wastewater Treatment Rate and Eukaryotic Organisms of Activated Sludge in Sequencing Batch Reactors. J. Environ. Qual., 46, 714.
  • 4. Bernat K., Kulikowska D., Zielińska M., CydzikKwiatkowska A., Wojnowska-Baryła I. 2013. Simultaneous Nitrification and Denitrification in an SBR with a Modified Cycle During Reject Water Treatmen. Arch. Environ. Prot. 39(1), 83–91.
  • 5. Cable M. 2009. An Evaluation of Turbulence Models for the Numerical Study of Forced and Natural Convective Flow in Atria, Queen’s University Kingston, Ontario, Canada.
  • 6. Cydzik-Kwiatkowska A., Zielińska, M. 2016. Bacterial communities in full-scale wastewater treatment systems. Word J. Microb. Biot. 32(4), 1–8.
  • 7. Drewnowski J. 2019. Advanced Supervisory Control System Implemented at Full-Scale WWTP–A Case Study of Optimization and Energy Balance Improvement. Water, 11, 1218
  • 8. Drewnowski J., Remiszewska-Skwarek A., Duda S., Łagód G. 2019. Aeration Process in Bioreactors as the Main Energy Consumer in a Wastewater Treatment Plant. Review of Solutions and Methods of Process Optimization. Processes, 7, 311.
  • 9. Drewnowski J., Remiszewska-Skwarek A., Fernandez-Morales F.J. 2018. Model based evaluation of plant improvement at a large wastewater treatment plant (WWTP). J. Environ. Sci. Health A, 53, 669–675.
  • 10. Fayolle Y., Cockx A., Gillot S., Roustan M., Héduit A. 2007. Oxygen transfer prediction in aeration tanks using CFD. Chemical Engineering Science, 62(24), 7163–7171.
  • 11. Habermacher J., Benetti A.D., Derlon N., Morgenroth E. 2015. The effect of different aeration conditions in activated sludge--Side-stream system on sludge production, sludge degradation rates, active biomass and extracellular polymeric substances. Water Res. 15(85), 46–56.
  • 12. Hartmann L. 1996. Biological wastewater treatment (In Polish), Wyd. Instalator Polski, Warszawa.
  • 13. Hreiz R., Potier O., Wicks J., Commenge J.-M. 2019. CFD Investigation of the effects of bubble aerator layouts on hydrodynamics of an activated sludge channel reactor. Environmental Technology, 40(20), 2657–2670.
  • 14. Karpińska A.M., Bridgeman J. 2017. Towards a robust CFD model for aeration tanks for sewage treatment – a lab-scale study, Engineering Applications of Computational Fluid Mechanics, 11(1), 371–395.
  • 15. Kerdouss F., Bannari A., Proulx P. 2006. CFD modeling of gas dispersion and bubble size in a double turbine stirred tank, Chemical Engineering Science 61, 3313–3322.
  • 16. Łagód G., Piotrowicz A., Gleń P., Drewnowski J., Sabba F. 2019. Modelling of sequencing batch reactor operating at various aeration modes. MATEC Web Conf., 252, 05013.
  • 17. Leu S.Y., Rosso D., Larson L.E., Stenstrom M.K. 2009. Real-time aeration efficiency monitoring in the activated sludge process and methods to reduce energy consumption and operating costs. Water Environ Res. 81(12), 2471–81.
  • 18. Makowska M., Spychała M., Błażejewski R. 2009. Treatment of Septic Tank Effluent in Moving Bed Biological Reactors with Intermittent Aeration. Pol. J. Environ. Stud. 18(6), 1051–1057.
  • 19. Małecka I. 2011. Application of CFD calculations to select capacity of hot water temperature stabilizer in thermal centres (in Polish). Zeszyty Naukowe. Inżynieria Lądowa i Wodna w Kształtowaniu Środowiska, 4, 88–95.
  • 20. Piotrowski R., Paul A., Lewandowski M. 2019. Improving SBR Performance Alongside with Cost Reduction Through Optimizing Biological Processes and Dissolved Oxygen Concentration Trajectory Appl. Sci., 9, 2268.
  • 21. Pittoors E., Guo Y., Van Hulle S.W.H. 2014. Modeling dissolved oxygen concentration for optimizing aeration systems and reducing oxygen consumption in activated sludge processes: a review. Chemical Engineering Communications, 201(8), 983–1002.
  • 22. Rosso D. Stenstrom M.K., Larson L.E. 2008. Aeration of large-scale municipal wastewater treatment plants: state of the art. Water Sci Technol. 57(7), 973–978.
  • 23. Singh M., Srivastava R.K. 2011. Sequencing batch reactor technology for biological wastewater treatment: A review. Asia-Pac J. Chem. Eng. 6(1), 3–13.
  • 24. Sobotka D., Czerwionka K., Makinia J. 2015. The effects of different aeration modes on ammonia removal from sludge digester liquors in the nitritation-anammox proces. Water Sci. Technol. 71(7), 986–995.
  • 25. Suchecki W., Alabrudziński S. 2003. Analysis of the velocity field regarding large elements in the flow (in Polish), Inżynieria i Aparatura Chemiczna, 5, 6–13.
  • 26. Sungkorn R., Derksen J.J., Khinast J.G. 2012. Modeling of aerated stirred tanks with shear-thinning power law liquids, International Journal of Heat and Fluid Flow 36, 153–166.
  • 27. Sytek-Szmeichel K., Podedworna J., ZubrowskaSudol M. 2016. Efficiency of Wastewater Treatment in SBR and IFAS-MBSBBR Systems in Specified Technological Conditions. Water Sci Technol ,73, 1349–1356.
  • 28. Talaga J., Wójtowicz R., Duda A. 2008. Investigations of turbulence intensity in stirred vessels with two impellers (in Polish), Czasopismo Techniczne. Mechanika, 105(2-M), 361–370.
  • 29. Tang M., Liu J. 2019. Aeration Optimization of Large-Scale Membrane Bioreactors in a Sewage Treatment Plant. Water Practice And Technology, 14, 198–202.
  • 30. Traoré A., Grieu S., Puig S., Corominas L., Thiery F., Polit M., Colprim J. 2005. Fuzzy Control of Dissolved Oxygen in a Sequencing Batch Reactor Pilot Plant. Chem Eng J, 1, 13–19
  • 31. Vanhooren H., Meirlaen J., Amerlinck Y., Claeys F., Vangheluwe H., Vanrolleghem P.A. 2003. WEST: Modelling biological wastewater treatment. J. Hydroinform. 5(1), 27–50.
  • 32. Wagner M, Cornel P, Krause S. 2002. Efficiency of different aeration systems in full scale membrane bioreactors. Proc Water Environ Fed., 10, 434–43.
  • 33. Witkowska E. 2006. Preliminary study on the impact of oxygenation upon performance of SBR reactor (in Polish). Inż. Ekolog., 14, 30–40.
  • 34. Yahi H., Madi N., Midoune K. 2014. Contribution to biological treatment of dairy effluent by sequencing batch reactor (SBR). Desalination and Water Treatment, 52(10–12), 2315–2321.
  • 35. Yang Y., Yang J., Zuo J., Li Y., He S., Yang X. Zhang K. 2011. Study on two operating conditions of a fullscale oxidation ditch for optimization of energy consumption and effluent quality by using CFD model. Water Res. 45(11), 3439–52.
  • 36. Zhang X., Zhang F., Zhao Y., Li Z. 2017. Start-Up and Aeration Strategies for a Completely Autotrophic Nitrogen Removal Process in an SBR. Biomed Res Int. 17 art. no. 1089696.
  • 37. Zhang Y., Li C., Xu Y., Tang Q., Zheng Y., Liu H., Fernandez-Rodriguez E. 2019. Study on Propellers Distribution and Flow Field in the Oxidation Ditch Based on Two-Phase CFD Model. Water, 11, 2506.
  • Katsou E., Alvarino T., Malamis S., Suarez S., Frison N., Omil F. and Fatone, F. 2016. Effects of selected pharmaceuticals on nitrogen and phosphorus removal bioprocesses. Chemical Engineering Journal, 295, 509–517.
Uwagi
W bibliografii została rozdzielona poz. 37.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f97dcb5-6563-403c-8f8d-ee3edf487225
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.