PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new modified WINDMI jerk system with exponential and sinusoidal nonlinearities, its bifurcation analysis, multistability, circuit simulation and synchronization design

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, a new 3-D modified WINDMI chaotic jerk system with exponential and sinusoidal nonlinearities is presented and its dynamical behaviours and properties are investigated. Firstly, some properties of the system are studied such as equilibrium points and their stability, Lyapunov exponents and Kaplan-Yorke dimension. Also, we study the new jerk system dynamics using numerical simulations and analyses, including phase portraits, Lyapunouv exponent spectrum, bifurcation diagram and Poincaré map, 0-1 test. Next, we exhibit that the new 3-D chaotic modified WINDMI jerk system has multistability with coexisting chaotic attractors. Moreover, we design an electronic circuit using MultiSim 14.1 for real implementation of the modified WINDMI chaotic jerk system. Finally, we design an active synchronization scheme for the complete synchronization of the modified WINDMI chaotic jerk systems via backstepping control.
Rocznik
Strony
711--735
Opis fizyczny
Bibliogr. 33 poz., rys., wzory
Twórcy
  • Faculty of Information and Computing, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
  • Centre for Control Systems, Vel Tech University, 400 Feet Outer Ring Road, Avadi, Chennai-600062 Tamil Nadu, India
  • Faculty of Information and Computing, Universiti Sultan Zainal Abidin Terengganu, Malaysia
  • Larbi Tebessi University - Tebessi routede constantine, 12022, Tebessa, Algeria
autor
  • Faculty of Information and Computing, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
  • Department of Mechanical Engineering, Universitas Muhammadiyah Tasikmalaya, Jawa Barat 46196, Indonesia
autor
  • Department of Information Technology, Tagore Engineering College, Rathinamangalam, Chennai - 600127, Tamil Nadu, India
Bibliografia
  • [1] P.-C. Bürkner, I. Koöker, S. Oladyshkin and W. Nowak: A fully Bayesian sparse polynomial chaos expansion approach with joint priors on the coefficients and global selection of terms. Journal of Computational Physics, 488 (2023). DOI: 10.1016/j.jcp.2023.112210.
  • [2] A. De, A. Nandi, A. Mallick, A.I. Middya and S. Roy: Forecasting chaotic weather variables with echo state networks and a novel swing training approach. Knowledge-Based Systems, 269 (2023). DOI: 10.1016/j.knosys.2023.110506.
  • [3] C. Wang and L. Song: An image encryption scheme based on chaotic system and compressed sensing for multiple application scenarios. Information Sciences, 642 (2023). DOI: 10.1016/j.ins.2023.119166.
  • [4] X. Liu, X. Tong, Z. Wang, M. Zhang and Y. Fan: A novel devaney chaotic map with uniform trajectory for color image encryption. Applied Mathematical Modelling, 120 (2023), 153-174. DOI: 10.1016/j.apm.2023.03.038.
  • [5] Q. Lai and Y. Liu: A cross-channel color image encryption algorithm using two-dimensional hyperchaotic map. Expert Systems with Applications, 223 (2023). DOI: 10.1016/j.eswa.2023.119923.
  • [6] H. Jia, J. Liu, W. Li and M. Du: A family of new generalized multiscroll Hamiltonian conservative chaotic flows on invariant hypersurfaces and FPGA implementation. Chaos, Solitons and Fractals, 172 (2023). DOI: 10.1016/j.chaos.2023.113537.
  • [7] Q. Wan, F. Li, J. Liu, S. Chen and Z. Yan: A new memristive system with chaotic and periodic bursting and its FPGA implementation. Circuits, Systems and Signal Processing, 42(1), (2023), 623-637. DOI: 10.1007/s00034-022-02136-x.
  • [8] Q. Chen, B. Li, W. Yin, X. Jiang and X. Chen: Bifurcation, chaos and fixed-time synchronization of memristor cellular neural networks. Chaos, Solitons and Fractals, 171 (2023). DOI: 10.1016/j.chaos.2023.113440.
  • [9] Q. Lai and Z. Chen: Grid-scroll memristive chaotic system with application to image encryption. Chaos, Solitons and Fractals, 170 (2023). DOI: 10.1016/j.chaos.2023.113341.
  • [10] M. Raab, J. Zeininger, Y. Suchorski, K. Tokuda and G. Rupprechter: Emergence of chaos in a compartmentalized catalytic reaction nanosystem. Nature Communications, 14(1), (2023). DOI: 10.1038/s41467-023-36434-y.
  • [11] S. Vaidyanathan and A.T. Azar: Backstepping Control of Nonlinear Dynamical Systems. Academic Press, Cambridge, USA, 2021.
  • [12] F. Li and J. Zeng: Multi-scroll attractor and multi-stable dynamics of a three-dimensional jerk system. Energies, 16(5), (2023). DOI: 10.3390/en16052494.
  • [13] E.D. Dongmo, J. Ramadoss, A.R. Tchamda, M.E. Sone and K. Rajagopal: FPGA implementation, controls and synchronization of autonomous Josephson junction jerk oscillator. Physica Scripta, 98(3), (2023). DOI: 10.1088/1402-4896/acb85b.
  • [14] J. Ramadoss, A.N. Kengnou Telem, J. Kengne and K. Rajagopal: Complex dynamics in a novel jerk system with septic nonlinearity: analysis, control, and circuit realization. Physica Scripta, 98(1), (2022). DOI: 10.1088/1402-4896/aca449.
  • [15] Q. Lai and C. Lai: Design and implementation of a new memristive chaotic system with coexisting attractors and offset boosting behaviors. Indian Journal of Physics, 96(14), 4391-4401. DOI: 10.1007/s12648-022-02344-w.
  • [16] W. Horton and I. Doxas: A low-dimensional dynamical model for the solar wind the driven geotail-ionosphere system. Journal of Geophysical Research: Space Physics, 103(A3) (1997), 4561-4572. DOI: 10.1029/97JA02417.
  • [17] J.C. Sprott: Chaos and Time-Series Analysis, Oxford University Press, New York, USA, 2003.
  • [18] A. Kumar and S. Singh: Bifurcation analysis of a pulsating heat pipe. International Journal of Thermal Sciences, 192 (2023). DOI: 10.1016/j.ijthermalsci.2023.108384.
  • [19] A. Singh and V.S. Sharma: Bifurcations and chaos control in a discretetime prey-predator model with Holling type-II functional response and prey refuge. Journal of Computational and Applied Mathematics, 418 (2022). DOI: 10.1016/j.cam.2022.114666.
  • [20] A. Singh and V.S. Sharma: Codimension-2 bifurcation in a discrete predator-prey system with constant yield predator harvesting. International Journal of Biomathematics, 16(5), (2023). DOI: 10.1142/S1793524522501091.
  • [21] B.B.T. Francisco and P.C. Rech: Multistability, period-adding, and spirals in a snap system with exponential nonlinearity. European Physical Journal B, 96(5), (2023). DOI: 10.1140/epjb/s10051-023-00536-9.
  • [22] Z. Zhang, L. Huang, J. Liu, Q. Guo, C. Yu and X. Du: Construction of a family of 5D Hamiltonian conservative hyperchaotic systems with multistability. Physica A: Statistical Mechanics and Its Applications, 620 (2023). DOI: 10.1016/j.physa.2023.128759.
  • [23] S. Vaidyanathan, A.T. Azar, I.A. Hameed, K. Benkouider, E. Tlelo-Cuautle, B. Ovilla-Martinez, C.H. Lien and A. Sambas: Bifurcation analysis, synchronization and FPGA implementation of a new 3-D jerk system with a stable equilibrium. Mathematics, 11(12), (2023). DOI: 10.3390/math11122623.
  • [24] T. Ma, J. Mou, A.A. Al-Barakati, H. Jahanshahi and S. Li: Coexistence behavior of a double-MR-based cellular neural network system and its circuit implementation. Nonlinear Dynamics, 111(12), (2023), 11593-11611. DOI: 10.1007/s11071-023-08443-5.
  • [25] G. Sivaganesh and K. Srinivasan: Theoretical investigations on the multistability, quasiperiodicity and synchronization of the driven Chua’s circuit. Circuits, Systems, and Signal Processing, 42(6), (2023), 3200-3228. DOI: 10.1007/s00034-022-02274-2.
  • [26] J. Petrzela: Chaotic states of transistor-based tuned-collector oscillator. Mathematics, 11(9), (2023). DOI: 10.3390/math11092213.
  • [27] K. Zourmba, C. Fischer, B. Gambo, J.Y. Effa and A. Mohamadou: Chaotic oscillator with diode-inductor nonlinear bipole-based jerk circuit: Dynamical study and synchronization. Journal of Circuits, Systems and Computers, 32(12), (2023). DOI: 10.1142/S0218126623502146.
  • [28] F.E. Alsaadi, S. Bekiros, Q. Yao, J. Liu and H. Jahanshahi: Achieving resilient chaos suppression and synchronization of fractional-order supply chains with fault-tolerant control. Chaos, Solitons and Fractals, 174 (2023). DOI: 10.1016/j.chaos.2023.113878.
  • [29] H. Cheng, H. Li, Q. Dai and J. Yang: A deep reinforcement learning method to control chaos synchronization between two identical chaotic systems. Chaos, Solitons and Fractals, 174 (2023). DOI: 10.1016/j.chaos.2023.113809.
  • [30] R. Luo, S. Liu, Z. Song and F. Zhang: Fixed-time control of a class of fractional-order chaotic systems via backstepping method. Chaos, Solitons and Fractals, 167 (2023). DOI: 10.1016/j.chaos.2022.113076.
  • [31] S. Yan, J. Wang, E. Wang, Q. Wang, X. Sun and L. Li: A four-dimensional chaotic system with coexisting attractors and its backstepping control and synchronization. Integration, 91 (2023), 67-78. DOI: 10.1016/j.vlsi.2023.03.001.
  • [32] N. Debdouche, L. Zarour, H. Benbouhenni, F. Mehazzem and B. Deffaf: Robust integral backstepping control microgrid connected photovoltaic System with battery energy storage through multi-functional voltage source inverter using direct power control SVM strategies. Energy Reports, 10 (2023), 565-580. DOI: 10.1016/j.egyr.2023.07.012.
  • [33] A. Hosseinnajad, N. Mohajer and S. Nahavandi: Novel barrier Lyapunov function-based backstepping fault tolerant control system for an ROV with thruster constraints. Ocean Engineering, 285 (2023). DOI: 10.1016/j.oceaneng.2023.115312.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f918b4c-ec63-427f-8c6d-d40d37097829
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.