PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A Hybrid Petri Net Model of the Akt-Wnt-mTOR-p70S6K Signalling Network in Neurons

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Signalling networks in the mammalian cell are complex systems. Their dynamic properties can often be explained by the interaction of regulatory network motifs. Computational modelling is instrumental in explaining how these systems function. To accomplish this task in this paper, we combine hybrid Petri net modelling and simulation, which produce the individual trajectories of protein concentrations and enable structural analysis of the reaction network. In the end, we generate dynamic graphs to get a system view of the signalling network dynamics. We use this methodology on the regulatory network of the proteins mTOR and p70S6K. In neuronal synaptic plasticity, prolonged activation of these proteins is needed to support an increased protein synthesis. However, biologists wonder how two brief calcium influxes of 1 second each can lead to this long activation downstream. With our computational approach and a new model of the Akt-Wnt-mTOR-p70S6K network, we explore the current biological hypothesis for the response of mTOR: the crosstalk between the Akt and Wnt pathways. Simulation results indicate instead that a feedforward motif between Akt, GSK3 and TSC2 acts as a coincidence detector. From the simulation results, we can also make two predictions that can be tested experimentally and indicate where a molecular regulatory mechanism seems to be missing to completely explain the activity in the signalling network.
Wydawca
Rocznik
Strony
1--25
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • Centre de Recherche CERVO, Département de Biochimie, Microbiologie et Bio-informatique, Université Laval, 2325, rue de l’Université, Québec, G1V 0A6 Canada
autor
  • Centre de Recherche CERVO, Département de Biochimie, Microbiologie et Bio-informatique, Université Laval, 2325, rue de l’Université, Québec, G1V 0A6 Canada
Bibliografia
  • [1] Ryan TJ, Roy DS, Pignatelli M, Arons A, Tonegawa S. Engram cells retain memory under retrograde amnesia. Science, 2015. 348(6238):1007-1013.
  • [2] Herring BE, Nicoll RA. Long-Term Potentiation: From CaMKII to AMPA Receptor Trafficking. Annual Review of Physiology, 2016. 78(1):351-365. doi:10.1146/annurev-physiol-021014-071753. http://dx.doi.org/10.1146/annurev-physiol-021014-071753.
  • [3] Tsokas P, Ma T, Iyengar R, Landau EM, Blitzer RD. Mitogen-Activated Protein Kinase Upregulates the Dendritic Translation Machinery in Long-Term Potentiation by Controlling the Mammalian Target of Rapamycin Pathway. The Journal of Neuroscience, 2007. 27(22):5885-5894.
  • [4] Tudor JC, Davis EJ, Peixoto L, Wimmer ME, van Tilborg E, Park AJ, Poplawski SG, Chung CW, Havekes R, Huang J, Gatti E, Pierre P, Abel T. Sleep deprivation impairs memory by attenuating mTORC1-dependent protein synthesis. Science Signaling, 2016. 9(425):ra41-ra41. http://stke.sciencemag.org/content/9/425/ra41.full.pdf.
  • [5] Ma T, Tzavaras N, Tsokas P, Landau EM, Blitzer RD. Synaptic Stimulation of mTOR Is Mediated by Wnt Signaling and Regulation of Glycogen Synthetase Kinase-3. The Journal of Neuroscience, 2011. 31(48):17537-17546. http://www.jneurosci.org/content/31/48/17537.full.pdf+html.
  • [6] Liu F, Heiner M. Approaches in Integrative Bioinformatics, chapter Petri Nets for Modeling and Analyzing Biochemical Reaction Networks, pp. 245-272. Springer. ISBN 978-3-642-41280-6, 2014.
  • [7] Hardy S, Iyengar R. Analysis of dynamical models of signaling networks with Petri nets and dynamic graphs. In: Modeling in Systems Biology, pp. 225-251. Springer London, 2011.
  • [8] Azeloglu EU, Hardy SV, Eungdamrong NJ, Chen Y, Jayaraman G, Chuang PY, Fang W, Xiong H, Neves SR, Jain MR, Li H, Ma’ayan A, Gordon RE, He JC, Iyengar R. Interconnected Network Motifs Control Podocyte Morphology and Kidney Function. Science Signaling, 2014. 7(311):ra12-ra12.
  • [9] Jain P, Bhalla US. Signaling Logic of Activity-Triggered Dendritic Protein Synthesis: An mTOR Gate But Not a Feedback Switch. PLoS Comput Biol, 2009. 5(2):1-17.
  • [10] Tan CW, Gardiner BS, Hirokawa Y, Smith DW, Burgess AW. Analysis of Wnt signaling β-catenin spatial dynamics in HEK293T cells. BMC Systems Biology, 2014. 8(1):1-18.
  • [11] Hardy SV, Pagé Fortin M. Analysis of the Signal Transduction Dynamics Regulating mTOR with Mathematical modeling, Petri Nets and Dynamic Graphs. In: PNSE@Petri Nets 2016. 2016 pp. 347-361. URL http://ceur-ws.org/Vol-1591/paper24.pdf.
  • [12] Lee E, Salic A, Krüger R, Heinrich R, Kirschner MW. The Roles of APC and Axin Derived from Experimental and Theoretical Analysis of the Wnt Pathway. PLoS Biol, 2003;1(1). doi:10.1371/journal.pbio.0000010.
  • [13] Heiner M, Herajy M, Liu F, Rohr C, Schwarick M. Application and Theory of Petri Nets: 33rd International Conference, PETRI NETS 2012, Hamburg, Germany, June 25-29, 2012. Proceedings, chapter Snoopy - A Unifying Petri Net Tool, pp. 398-407. Springer Berlin Heidelberg, Berlin, Heidelberg. ISBN:978-3-642-31131-4, 2012.
  • [14] Chen J, Park CS, Tang SJ. Activity-dependent Synaptic Wnt Release Regulates Hippocampal Long Term Potentiation. Journal of Biological Chemistry, 2006;281(17):11910-11916. doi:10.1074/jbc.M511920200.
  • [15] Li Y, Li B, Wan X, Zhang W, Zhong L, Tang SJ. NMDA receptor activation stimulates transcription-independent rapid wnt5a protein synthesis via the MAPK signaling pathway. Molecular Brain, 2012;5(1):1-9. doi:10.1186/1756-6606-5-1.
  • [16] Mak BC, Takemaru KI, Kenerson HL, Moon RT, Yeung RS. The Tuberin-Hamartin Complex Negatively Regulates β-Catenin Signaling Activity. Journal of Biological Chemistry, 2003;278(8):5947-5951. URL http://www.jbc.org/content/278/8/5947.full.pdf+html.
  • [17] Mak BC, Kenerson HL, Aicher LD, Barnes EA, Yeung RS. Aberrant β-Catenin Signaling in Tuberous Sclerosis. The American Journal of Pathology, 2016;167(1):107-116. doi:10.3748/wjg.v22.i33.7486.
  • [18] Cai SL, Tee AR, Short JD, Bergeron JM, Kim J, Shen J, Guo R, Johnson CL, Kiguchi K, Walker CL. Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. The Journal of Cell Biology, 2006;173(2):279-289. doi:10.1083/jcb.200507119.
  • [19] Shumway SD, Li Y, Xiong Y. 14-3-3 Binds to and Negatively Regulates the Tuberous Sclerosis Complex 2 (TSC2) Tumor Suppressor Gene Product, Tuberin. Journal of Biological Chemistry, 2003;278(4):2089-2092. doi:10.1074/jbc.C200499200.
  • [20] Fukumoto S, Hsieh CM, Maemura K, Layne MD, Yet SF, Lee KH, Matsui T, Rosenzweig A, Taylor WG, Rubin JS, Perrella MA, Lee ME. Akt Participation in the Wnt Signaling Pathway through Dishevelled. Journal of Biological Chemistry, 2001;276(20):17479-17483. doi:10.1074/jbc.C000880200.
  • [21] Valvezan AJ, Zhang F, Diehl JA, Klein PS. Adenomatous Polyposis Coli (APC) Regulates Multiple Signaling Pathways by Enhancing Glycogen Synthase Kinase-3 (GSK-3) Activity. Journal of Biological Chemistry, 2012;287(6):3823-3832. URL http://www.jbc.org/content/287/6/3823.full.pdf+html.
  • [22] Pullen N, Thomas G. The modular phosphorylation and activation of p70s6k. FEBS Letters, 1997; 410(1):78-82.
  • [23] Magnuson B, Ekim B, Fingar DC. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochemical Journal, 2012;441(1):1-21. URL http://www.biochemj.org/content/441/1/1.full.pdf.
  • [24] Moraru II, Schaff JC, Slepchenko BM, Blinov M, Morgan F, Lakshminarayana A, Gao F, Li Y, Loew LM. The Virtual Cell Modeling and Simulation Software Environment. IET systems biology, 2008;2(5):352-362. doi:10.1049/iet-syb:20080102.
  • [25] Alon U. Biological Networks: The Tinkerer as an Engineer. Science, 2003;301(5641):1866-1867. URL http://science.sciencemag.org/content/301/5641/1866.full.pdf.
  • [26] Mangan S, Alon U. Structure and function of the feed-forward loop network motif. Proceedings of the National Academy of Sciences, 2003;100(21):11980-11985. http://www.pnas.org/content/100/21/11980.full.pdf.
  • [27] Soliman S, Heiner M. A Unique Transformation from Ordinary Differential Equations to Reaction Networks. PLOS ONE, 2010;5(12):1-6. URLhttps://doi.org/10.1371/journal.pone.0014284.
  • [28] Brakeman J, Gu S, Wang X, Dolin G, Baraban J. Neuronal localization of the adenomatous polyposis coli tumor suppressor protein. Neuroscience, 1999;91(2):661-672. doi:http://dx.doi.org/10.1016/S0306-4522(98)00605-8.
  • [29] Kim D, Rath O, Kolch W, Cho KH. A hidden oncogenic positive feedback loop caused by crosstalk between Wnt and ERK Pathways. Oncogene, 2007;26(31):4571-4579. doi:10.1038/sj.onc.1210230.
  • [30] Romanelli A, Martin KA, Toker A, Blenis J. p70 S6 Kinase Is Regulated by Protein Kinase Cζ and Participates in a Phosphoinositide 3-Kinase-Regulated Signalling Complex. Molecular and Cellular Biology, 1999. 19(4):2921-2928. doi:10.1128/MCB.19.4.2921. http://mcb.asm.org/content/19/4/2921.full.pdf+html.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f8ead9e-696a-4822-b579-c7ad2e5a7e21
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.