PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mittag-Leffler-Hyers-Ulam stability for a first- and second-order nonlinear differential equations using Fourier transform

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, we apply the Fourier transform to prove the Hyers-Ulam and Hyers-Ulam-Rassias stability for the first- and second-order nonlinear differential equations with initial conditions. Additionally, we extend the results to investigate the Mittag-Leffler-Hyers-Ulam and Mittag-Leffler-Hyers-Ulam-Rassias stability of these differential equations using the proposed method.
Wydawca
Rocznik
Strony
art. no. 20240033
Opis fizyczny
Bibliogr. 51 poz.
Twórcy
  • Department of Mathematics, College of Engineering and Technology, SRM Institute of Science & Technology, Kattankulthur – 603 203, Tamil Nadu, India
  • Department of Mathematics, College of Engineering and Technology, SRM Institute of Science & Technology, Kattankulthur – 603 203, Tamil Nadu, India
  • Department of Mathematics, Rajalakshmi Engineering College (Autonomous), Thandalam, Chennai - 602 105, Tamil Nadu, India
Bibliografia
  • [1] S. M. Ulam, Problem in Modern Mathematics, John Wiley & Sons, New York, 1964.
  • [2] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941), no. 4, 222–224, DOI: https://doi.org/10.1073/pnas.27.4.222.
  • [3] T. M. Rassias, On the stability of the linear mappings in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297–300, DOI: https://doi.org/10.2307/2042795.
  • [4] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), no. 1–2, 64–66, DOI: https://doi.org/10.2969/jmsj/00210064.
  • [5] D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 57 (1951), no. 4, 223–237, DOI: https://doi.org/10.1090/S0002-9904-1951-09511-7.
  • [6] N. Brillouet-Belluot, J. Brzdek, and K. Cieplinski, On some recent developments in Ulam’s type stability, Abs. Appl. Anal. 2012 (2012), 41, DOI: https://doi.org/10.1155/2012/716936.
  • [7] M. Burger, N. Ozawa, and A. Thom, On Ulam stability, Israel J. Math 193 (2013), 109–129, DOI: https://doi.org/10.1007/s11856-012-0050-z.
  • [8] L. Cǎdariu, L. Gǎvruţa, and P. Gǎvruţa, Fixed points and generalized Hyers-Ulam stability, Abs. Appl. Anal. 2012 (2012), 10, DOI: https://doi.org/10.1155/2012/712743.
  • [9] S. M. Jung, Hyers-Ulam-Rassias stability of functional equation in nonlinear analysis, Optimization Application, Springer, New York, 2011.
  • [10] M. Almahalebi, A. Chahbi, and S. Kabbaj, A Fixed point approach to the stability of a bicubic functional equations in 2-Banach spaces, Palestine J. Math. 5 (2016), no. 2, 220–227.
  • [11] A. Ponmana Selvan, S. Sabarinathan, and A. Selvam, Approximate solution of the special type differential equation of higher-order using Taylor’s series, J. Math Comp. Sci. 27 (2022), no. 2, 131–141, DOI: https://doi.org/10.22436/jmcs.027.02.04.
  • [12] R. Murali, J. M. Rassias, and V. Vithya, The general solution and stability of nonadecic functional equation in matrix normed spaces, Malaya J. Matematik 5 (2017), 416–427, DOI: https://doi.org/10.26637/mjm502/020.
  • [13] K. Ravi, J. M. Rassias, and B. V. Senthil Kumar, Ulam-Hyers stability of undecic functional equation in quasi-beta-normed spaces fixed point method, Tbilisi Math. Sci. 9 (2016), no. 2, 83–103, DOI: https://doi.org/10.1515/tmj-2016-0022.
  • [14] J. M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Functional Anal. 46 (1982), no. 1, 126–130, DOI: https://doi.org/10.1016/0022-1236(82)90048-9.
  • [15] J. Huang, S. M. Jung, and Y. Li, On Hyers-Ulam stability of nonlinear differential equations, Bull. Korean Math. Soc. 52 (2015), no. 2, 685–697. DOI: http://dx.doi.org/10.4134/BKMS.2015.52.2.685.
  • [16] M. Obloza, Hyers stability of the linear differential equation, Rocznik Naukowo-Dydaktyczny, Prace Matematyczne 13 (1993), 259–270.
  • [17] M. Obloza, Connections between Hyers and Lyapunov stability of the ordinary differential equations, Rocznik Naukowo-Dydaktyczny, Prace Matematyczne 14 (1997), 141–146, http://hdl.handle.net/11716/8211.
  • [18] C. Alsina and R. Ger, On some inequalities and stability results related to the exponential function, J. Inequl. Appl. 2 (1998), 373–380.
  • [19] S. M. Jung, Hyers-Ulam stability of linear differential equation of first-order, Appl. Math. Lett. 17 (2004), no. 10, 1135–1140, DOI: https://doi.org/10.1016/j.aml.2003.11.004.
  • [20] S. M. Jung, Hyers-Ulam stability of linear differential equations of first-order (III), J. Math. Anal. Appl. 311 (2005), no. 1, 139–146, DOI: https://doi.org/10.1016/j.jmaa.2005.02.025.
  • [21] S. M. Jung, Hyers-Ulam stability of linear differential equations of first-order (II), Appl. Math. Lett. 19 (2006), no. 9, 854–858, DOI: https://doi.org/10.1016/j.aml.2005.11.004.
  • [22] S. M. Jung, Hyers-Ulam stability of a system of first-order linear differential equations with constant coefficients, J. Math. Anal. Appl. 320 (2006), 549–561, DOI: https://doi.org/10.1016/j.jmaa.2005.07.032.
  • [23] Q. H. Alqifiary and S. M. Jung, Laplace transform and generalized Hyers-Ulam stability of linear differential equations, Electron. J.
  • Differential Equations 2014 (2014), 1–11. https://ejde.math.txstate.edu/.
  • [24] J. M. Rassias, R. Murali, and A. Ponmana Selvan, Mittag-Leffler-Hyers-Ulam stability of linear differential equations using Fourier transforms, J. Comp. Anal. Appl. 29 (2021), no. 1, 68–85.
  • [25] R. Murali and A. Ponmana Selvan, Fourier transforms and Ulam stabilities of linear differential equations, Front. Funct. Equ. Anal. Inequalit. 2019 (2019), 195–217, DOI: https://doi.org/10.1007/978-3-030-28950-8_12.
  • [26] R. Murali, A. Ponmana Selvan, and C. Park, Ulam stability of linear differential equations using Fourier transform, AIMS Math. 5 (2019), no. 2, 766–780. DOI: http://dx.doi.org/10.3934/math.2020052.
  • [27] Y. Li and Y. Shen, Hyers-Ulam stability of linear differential equations of second-order, Appl. Math. Lett. 23 (2010), no. 3, 306–309, DOI: https://doi.org/10.1016/j.aml.2009.09.020.
  • [28] I. Fakunle and P. O. Arawomo, Hyers-Ulam stability of certain class of nonlinear second-order differential equations, Global J. Pure Appl. Math. 11 (2018), no. 1, 55–65. https://api.semanticscholar.org/CorpusID:198938167.
  • [29] J. Xue, Hyers-Ulam stability of linear differential equations of second-order with constant coefficient, Italian J. Pure Appl. Math. 32 (2014), 419–424.
  • [30] M. N. Qarawani, Hyers-Ulam stability of linear and nonlinear differential equation of second-order, Int. J. Appl. Math. Res. 1 (2012), no. 4, 422–432.
  • [31] M. N. Qarawani, Hyers-Ulam stability of a generalized second-order nonlinear differential equation, Appl. Math. 3 (2012), no. 12, 1857–1861. DOI: http://dx.doi.org/10.4236/am.2012.312252.
  • [32] S. M. Jung, Approximate solution of a linear differential equation of third order, Bull. Malaysian Math. Soc. Ser 2 35 2012, no. 4, 1063–1073.
  • [33] P. Gǎvruţa, S. M. Jung, and Y. Li, Hyers-Ulam stability for second-order linear differential equations with boundary conditions, Electron. J. Differential Equations 2011 (2011), 1–5.
  • [34] V. Kalvandi, N. Eghbali, and J. M. Rassias, Mittag-Leffler-Hyers-Ulam stability of fractional differential equations of second-order, J. Math. Extension 13 (2019), 1–15.
  • [35] R. Murali and A. Ponmana Selvan, Hyers-Ulam stability of nth order linear differential equation, Proyecciones: J. Math. 38 (2019), no. 3, 553–566.
  • [36] R. Murali and A. Ponmana Selvan, Hyers-Ulam stability of a free and forced vibrations, Kragujevac J. Math. 44 (2020), no. 2, 299–312.
  • [37] A. Zada, S. Faisal, and Y. Li, Hyers-Ulam-Rassias stability of non-linear delay differential equations, J. Nonlinear Sci. Appl. 10 (2017), 504–510, DOI: http://dx.doi.org/10.22436/jnsa.010.02.15.
  • [38] J. H. Huang and Y. Li, Hyers-Ulam stability of delay differential equations of first-order, Mathematische Nachrichten 289 (2016), no. 1, 60–66.
  • [39] H. Khan, Y. Li, W. Chen, D. Baleanu, and A. Khan, Existence theorems and Hyers-Ulam stability for a coupled system of fractional differential equations with p-Laplacian operator, Boundary Value Problems 2017 (2017), 157, DOI: http://dx.doi.org/10.1186/s13661-017-0878-6.
  • [40] H. Khan, W. Chen, A. Khan, T. S. Khan, and Q. M. Al-Madlal, Hyers-Ulam stability and existence criteria for coupled fractional differential equations involving p-Laplacian operator, Adv. Differential Equations 2018 (2018), 455, DOI: https://doi.org/10.1186/s13662-018-1899-x.
  • [41] H. Khan, T. A. Jawad, M. Muhammad Aslam, R. A. Khan, and A. Khan, Existence of positive solution and Hyers-Ulam stability for a nonlinear singular-delay-fractional differential equation, Adv. Differential Equations 2019 (2019), 104, DOI: https://doi.org/10.1186/s13662-019-2054-z.
  • [42] H. Khan, K. Alam, H. Gulzar, S. Etemad, and S. Rezapour, A case study of fractal-fractional tuberculosis model in China: Existence and stability theories along with numerical simulations, Math. Comput. Simulat. 198 (2022), 455–473, DOI: https://doi.org/10.1016/j.matcom.2022.03.009.
  • [43] H. Khan, J. F. Gomez-Aguilar, A. Alkhazzan, and A. Khan, A fractional order HIV-TB coinfection model with nonsingular Mittag-Leffler law, Math. Methods Appl. Sci. 43 (2020), no. 6, 1–21, DOI: https://doi.org/10.1002/mma.6155.
  • [44] H. Khan, W. Chen, and H. Sun, Analysis of positive solution and Hyers-Ulam stability for a class of singular fractional differential equations with p-Laplacian in Banach space, Math. Methods Appl. Sci. 41 (2018), no. 9, 1–11, DOI: https://doi.org/10.1002/mma.4835.
  • [45] R. Murali and A. Ponmana Selvan, Mittag-Leffler-Hyers-Ulam stability of a linear differential equations of first-order using Laplace transforms, Canadian J. Appl. Math. 2 (2020), no. 2, 47–59.
  • [46] A. Ponmana Selvan, G. Ganapathy, M. Saravanan, and R. Veerasivaji, Laplace transform and Hyers-Ulam stability of differential equation for logistic growth in a population model, Commun. Korean Math. Soc. 38 (2023), no. 4, 1163–1173.
  • [47] R. Murali, A. Ponmana Selvan, C. Park, and J. R. Lee, Aboodh transform and the stability of second-order linear differential equations, Adv. Differential Equations 2021 (2021), 296, DOI: https://doi.org/10.1186/s13662-021-03451-4.
  • [48] R. Murali, A. Ponmana Selvan, S. Baskaran, C. Park, and J. R. Lee, Hyers-Ulam stability of first-order linear differential equations using Aboodh transform, J. Inequal. Appl. 2021 (2021), 133, DOI: https://doi.org/10.1186/s13660-021-02670-3.
  • [49] S. Sabarinathan, D. Muralidharan, and A. Ponmana Selvan, Application of Mahgoub integral transform to Bessel’s differential equations, Commun. Math. Appl. 12 (2021), no. 4, 919–930, DOI: http://doi.org/10.26713/cma.v12i4.1645.
  • [50] S. M. Jung, A. Ponmana Selvan, and R. Murali, Mahgoub transform and Hyers-Ulam stability of first-order linear differential equations, J. Math. Inequal. 15 (2021), no. 3, 1201–1218, DOI: http://dx.doi.org/10.7153/jmi-2021-15-80.
  • [51] R. Murali, A. Ponmana Selvan, and S. Baskaran, Stability of linear differential equation higher-order using Mahgoub transforms, J. Math. Comput. sci. 30 (2023), 1–9, DOI: https://doi.org/10.22436/jmcs.030.01.01.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f81b0e9-1dcb-4182-ae72-eff87920c759
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.