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ARTIFICIAL INTELLIGENCE AND VIRTUAL ENVIRONMENT APPLICATION 
FOR MATERIALS DESIGN METHODOLOGY 

The purpose of this study is to develop a methodology for material design. This methogology will enabling the 
selection of production descriptors to ensure the required mechanical properties of structural steels specified by the 
designer of machinery and equipment. The selection is performed by using a computational model developed with 
use of artificial intelligence methods and virtual environment. The model is designed to provide impact examinations 
of these factors on the mechanical properties of steel only in the computing environment. Virtual computing 
environment allows full usage of the developed intelligent model of non-alloy and alloy structural steel properties 
and provides an easy, intuitive and user-friendly way to designate these properties for products after heat and plastic 
treatment. Also, very easy is the determination of chemical composition, treatment conditions and geometric 
dimensions on the basis of the steels mechanical properties. The proposed solutions allow the usage of developed 
virtual environment as a new medium in both, the scientific work performed remotely, as well as in education during 
classes. It is also possible the extension of this model to other groups of materials, not just for steel.  

1. INTRODUCTION 

The increasing consumer demands about better quality of steel products are forcing on 
manufacturers the usage of more precise manufacturing processes, which are based on the 
rigorous standards. To stay on the market, it is necessary to use computer systems supporting 
steel production or project managing on each stage of manufacturing. Increase in computing 
power, observed in recent years, favours the development of modern tools used for improving 
of product quality or for lowering its price. On special attention deserves, developed for 
several years, computer systems based on artificial intelligence methods and used to predict 
the mechanical properties of manufactured material. These systems absolving manufacturers 
from the multiple repetitions of expensive and long-term laboratory researches. The ability  
of structural steels mechanical properties obtainment is extremely valuable for manufacturers 
and designers, which are manufacturing or using steel elements. This allows fulfilling all 
customers’ requirements regarding the quality of supplied products. Modelling of steels 
mechanical properties is also associated with financial benefits, when expensive and time-
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consuming researches are reduced to necessary minimum. Necessary to conduct is only the 
verification of computations [1-4].  

This situation forced to develop a new computational model covering a wide range  
of input values, such as the high number of chemical elements, treatment conditions and 
geometrical dimensions, and relate them with the greatest possible number of mechanical 
properties. Suitable tools developed for modelling facilitation of these properties will enable 
more effective selection of steel production descriptors. It will also enable manufacturing  
of higher quality product, which are cheaper and are more optimized for customer needs. The 
development of computational methods and computer simulations resulted in replacement  
of the traditional laboratory in favour of the virtual laboratory. Development of virtual tools, 
which are simulating the investigative equipment and simulating the research methodology, 
can serve as a basis for combining aspects of laboratory research, simulation, measurement, 
and education. Application of these tools will allow the transfer of research and teaching 
procedures from real laboratory to virtual environment. This will increase the number  
of experiments conducted in virtual environment and thus, it will increase the efficiency  
of such researches. This will also allows the training of more professionals. This is not the 
work on real hardware. This is work with use of suitably designed simulators, namely those, in 
which the real research methodology is faithfully reproduces. Such simulators are very helpful, 
not only in industrial applications, but also in engineering education. Such researches were 
already preformed in the Department of Materials Processing Technology, Management and 
Information Technology in Materials Institute of Engineering Materials and Biomaterials, but 
this was not an integrated and comprehensive approach. Presented in this paper the new 
approach allows the methodical use of all available computational techniques, including the 
artificial intelligence tools and virtual environment [4-6]. 

2. LITERATURE REVIEW 

The aim of new engineering materials design is to optimize their functional properties 
in technological, economic and environmental aspect. This usually applies to products made 
from these materials, which meet the strict usage requirements. Such design, usually 
computer aided, must be based on a thorough knowledge of relations (theoretical and 
empirical) between the chemical composition of the material, its structure, treatment 
conditions and mechanical properties. The main benefit is the ability to design a suitable 
material selection (or manufacturing) methodology for various industrial applications [7-9].  

Models shall be construed as a reflection of the system with use of logical relationships 
between variables describing them. Manipulation of these variables allows the analysis, how 
the model behaves in certain conditions [10]. Computational model is a simplified 
description of the relation between steels mechanical properties and conditions of its 
production (Fig. 1.). It ignores certain dependencies occurring in reality (considered by 
model developers to be less important) [8],[11-13].  
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Evaluation of simulation results obtained with use of developed computational model 
is based on comparison of all relevant variables model with the measured data [14-15]. It is 
recommended when developing a model to obtain a comparable level of the representation 
accuracy for most variables than the unusually precise terms of one variable (although 
important), and poorly to others [16-19]. 

 
 

 
 

Fig. 1. The idea of modelling 

Computational material models are collections of information on their properties and 
descriptors, expressed as a mathematical equation. Modelling is thus formalizing the 
description methodology of the given property, limited to set of properties shown by the 
physical model with use of formulas and mathematical relationships. This means that the 
physical model determines the form of a mathematical model. The mathematical model should 
clearly correspond to the physical model. There are many techniques of mathematical 
modelling using several different algorithms described in available literature. They are used 
among others to modelling the steels mechanical properties. Equally large is collection  
of articles and books related to properties’ modelling, from the simple dependence equations, 
through statistical analyses and on the methods of artificial intelligence finishing. However, 
there is no universal method of mechanical properties prediction. Developed and described in 
the literature models can be applied in very limited range of the chemical elements 
concentration or even for single steel grade with very narrow manufacturing conditions. Some 
part of all models does not take into consideration important conditions as e.g. the production 
focusing exclusively on the chemical composition on maximum four alloy additions [20-23]. 

Virtual laboratory is, located in virtual environment, set of simulators and trainers, 
whose main objective is to simulate the research methodology of investigative equipment 
located in real scientific laboratory. Additionally, user can find manual instructions  
of equipment usage, real and virtual experiments descriptions, training exercises possible to 
perform and many other materials supporting the cognitive processes of research 
methodology. Virtual laboratory is among other, training environment for staff and students 
who have just started work with the given device type. They can acquire basic skills and 
abilities to operate the device without worrying about damaging expensive equipment or 
causing danger to life or health of their own and other peoples present in the lab. Improper 
handling of simulated device ends only on the simulated malfunction or damages, visible 
only on the monitor screen. Then, user simply needs to reset the simulation to the initial state 
and repeat the experiment with the introduced correct parameters. Researches conducted in 
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academic centres indicate, that the ability to perform the experiment at home without 
supervisor has a positive effect on the student. He don't feel helpless and he doesn't make as 
many mistakes as a student familiar only with the theoretical descriptions of machines and 
having a first contact with the real device only in the classroom under the supervision of an 
instructor leading the subject [24-34]. 

3. COURSE AND SCOPE OF OWN WORK 

In order to develop a computer-aided method of steel mechanical properties modelling 
with use of artificial intelligence tools and virtual environment materials research were carried 
out in order to build a database of experimental results. These results were then used in the 
training process of artificial neural networks. This database was used to build a computational 
dependences model based on structural steels. To take full advantage of the developed 
computational model a materials science virtual laboratory was designed, developed and then 
used to predict the mechanical properties of the structural steels and to visualization  
of modelling results. It is placed in virtual reality an open science, research, simulation and 
teaching environment, which enable researches on selected mechanical properties of structural 
steels. Verification researches were performed to confirm the efficiency of virtual environment 
application for the purpose of modelling, simulation and prediction of mechanical properties 
of engineering materials on the example of structural steel. Developed software and obtained 
experimental results were used to work on the modelling of production conditions of steel 
meeting the requirements specified by the designers of machinery and equipment. Possible are 
also classes on science research methodology and operation of research equipment for students 
and young engineers carried out by use of traditional and e-learning methods. 

Non-alloyed and alloyed structural steels were selected for examinations as example 
material. As the main criterion for selection of steel types was the carbon concentration, which 
for structural steel does not exceed 0.6% [35-36]. Further criteria for minimal and maximal 
chemical elements concentration, conditions of heat and plastic treatment were taken from 
[49] and [50]. The selection of mechanical properties, which were examinated was based on 
[51] and on analysis of the steel markets [41-45] and study the literature [7],[12],[37-40]. 

For the description of structural steel, six mechanical properties present in the 
metallurgical certificate have been selected. To describe the above properties set  
of descriptors characterizing steel in manufacturing process has been developed. It consists 
of chemical composition described by concentration of thirteen of the most common 
elements in steels, two technologies of heat treatment used in manufacturing, two 
technologies of plastic treatment and the geometric dimensions of the final product. Steel 
was manufactured in electric arc furnaces with devices for steel vacuum degassing (VAD). 
The material was supplied in the form of heat and plastic treated long rods.  

Developed artificial neural networks were used to build the computational dependency 
model in structural steel. To build such model forty-nine artificial neural networks were 
trained. This model was built to verify the correctness of networks’ training process and to 
enable the effective usage of artificial neural networks for prediction and modelling  
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of structural steels properties. The model describes the relationships, which exist between 
the conditions of steel production and its mechanical properties after manufacturing. After 
passing into models’ inputs the input parameters, which are:  

• in case of straight modelling - chemical composition, head and plastic treatment 
conditions and geometrical dimensions, 

• in case of reversed modelling - mechanical properties.  
These values are transferred into active block in the computation model. There, these values 
are distributed simultaneously on all artificial neural networks. Complete results, namely: 

• in case of straight modelling - values or ranges of materials properties, 
• in case of reversed modelling - concentrations of chemical elements, conditions of heat 

and plastic treatment or geometric dimensions,  
are transferred outside of the model through the user interface. This model was, in the next 
step, used to build a materials science virtual laboratory. In application part of the 
laboratory, developed model is used in direct determination of the descriptors or properties 
of examined steels. In the network part on the basis of achieved results, the virtual sample 
file is generated. This file is a representation of real material sample in virtual environment. 
To obtain the results from this file it should be examined with the use of investigative 
equipment simulators, like a real material sample.  

In order of experimental verification of the developed computational dependency 
model, a dozen types of non-alloy and alloy structural steels for different purposes were 
selected for examinations. Comparative studies were conducted using the material science 
virtual laboratory and real laboratory of the Institute of Engineering Materials And 
Biomaterials. A set of files describing the conditions of production and mechanical 
properties of selected species and corresponding to them real, material samples taken from 
the ready-made steel rods were developed. At model inputs, the production conditions  
of steel were inputted. Obtained computational results were compared with those obtained 
by real examinations of real samples of steel material. The results obtained during 
examination of real steel were introduced into the material science virtual laboratory. 
Results obtained in virtual environment were compared with results obtained in real 
investigations. Computations were conducted independently for all tested steel types. Based 
on the simulation data, graphs showing the impact of the steel descriptor on the selected 
mechanical property of steel was developed. In the appropriate panel of NeuroLab 
application, production conditions among with the steels property with an appropriate range 
of variability were inputted. Operations performed in order to design new type of steel were 
made. Designed new steel should fulfil all strict requirements given by the customer in terms 
of production conditions and mechanical properties. New steel types were developed with 
use of material science virtual laboratory as material sample files, which are describing new 
types of steel meeting all requirements in virtual environment. In order to verify the 
correctness of performed simulations new steel types were manufactured in real world. The 
results obtained by modelling and simulation were compared with results obtained 
experimentally. Materials descriptors and mechanical properties values, which were used in 
the verification of the model in design of new steel types and in the researches  
of mechanical properties of structural steels, were produced by another production company. 
This data wasn't used at any stage in the process of building the model.  
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4. ANALYSIS OF OWN WORK RESULTS 

Accepted ranges of investigated steels chemical elements are shown graphically in 
(Fig. 2a). Ranges of heat and plastic treatment conditions of examined structural steels are 
presented on chart (Fig. 2b) for quenched and tempered steel and on (Fig. 2c) for normalised 
steel. Materials researches have been partially realised in the laboratories of the Institute  
of Engineering Materials and Biomaterials, and partly in a research laboratories "Batory" in 
Chorzów,  Poland [46]. Results of investigations are shown on Fig. 3. In  order  to  build  the  

a)        b)     c) 

     

Fig. 2. Ranges of a) chemical elements concentration, b) temperature of heat treatment, c) time of heat treatment 
 in investigated structural steels 

 
a)    b)       c)            d) 

 
 

e)    f)       g)            h) 

 
Fig. 3. The ranges of obtained test results a) yield strength R0,2, b) tensile strength Rm, c) relative elongation A5, d) relative 

area reduction Z, e) impact strength (KV), f) impact strength (KCU2) g) Brinell hardness HB, h) Vickers hardness HV 
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model, set of vectors are divided into four subsets. It was decided, that for each individual 
property, whose value should be estimated, to create a separate neural networks. For 
properties whose values in steel certificates are given in a range, two networks were trained 
to provide the estimation for the minimum and maximum values separately. The best results 
were obtained with artificial neural networks of multilayer perceptron structure with one or 
two hidden layers. Network types for each property along with the numbers of neurons and 
the parameters used in quality assessment for a set of test are shown in tables 1 and 2. In all 
cases, trained artificial neural network reached a value of the correlation coefficient above 
0.9 and the relatively low values of deviation ratio. Architectures of four from all forty-nine 
trained networks are shown on (Fig. 4). 

 

 

Fig. 4. Types of artificial neural networks used to prediction of mechanical properties a) yield stress of rolled, 
normalised steel, four-layer perceptron 17:17-9-3-1:1, b) minimal impact resistance of rolled, normalised steel, 
three-layer perceptron 16:16-11-1:1, c) relative elongation of forged, quenched and tempered steel, three-layer 

perceptron 17:19-7-1:1, d) tensile stress of forged, quenched and tempered steel, four-layer perceptron 22:26-16-13-1:1 

Developed artificial neural networks were the basis for developing a computational 
model of structural steel dependences. Forty-eight developed artificial neural networks are 
grouped in four blocks with twelve networks each for steels after normalising, quenching and 
tempering, rolling and forging. Appropriate block is activated depending on the type of heat 
and plastic treatment. Each block contains a set of artificial neural networks necessary to carry 
out the prediction of mechanical properties. A separate network is responsible for steel's type 
classifications. The examined steel's concentrations of chemical elements are compared with 
the chemical concentration of base steels and as a result, a base steel type, which the chemical 
composition is most similar to examined steel's chemical composition, is given. 

The training of artificial neural networks itself does not make possible the effective 
prediction of structural steels mechanical parameters. Statistica Neural Network is superb 
application for training of such networks. However, it is difficult to apply this system as 
effective environment applicable for properties modelling Necessary becomes the creation 
of new system, which will use of intuitive graphic user interface, will protect the user form 
processing of incorrect data, will use several neural networks simultaneously, export the 
modelling results and make accessible the necessary documentation, which will enable the 
beginning of the work to the user and facilitating her guidance. 
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Table 1. Parameters of computed neural networks for forged steels after quenching, tempering and normalising 

Quenched and tempered Normalised 
Properties of 
forged steel 

Network 
architecture 

average 
absolute 

error 

standard 
deviation 

ratio 

Pearson 
corella-

tion 

network 
architecture 

average 
absolute 

error 

Standard 
deviation 

ratio 

Pearson 
corella-

tion 
R0,2 22:29-9-1:1 26.44 0.20 0.98 18:18-5-1:1 18.14 0.18 0.98 
Rm 22:26-16-13-1:1 23.60 0.19 0.98 18:18-4-1:1 16.02 0.19 0.98 
A5 17:19-7-1:1 1.26 0.36 0.93 14:14-6-1:1 1.32 0.36 0.93 
Z 22:26-13-10-1:1 1.7 0.33 0.94 16:16-10-1:1 1.89 0.30 0.95 
KV(min) 16:20-8-1:1 16.42 0.34 0.93 15:15-6-1:1 15.91 0.35 0.93 
KV(max) 24:28-14-1:1 16.64 0.35 0.93 18:18-8-1:1 19.45 0.34 0.93 
KCU2(min) 12:14-7-1:1 10.65 0.35 0.93 14:14-9-1:1 14.62 0.30 0.95 
KCU2(max) 15:17-9-1:1 16.72 0.35 0.93 13:13-8-1:1 14.07 0.24 0.97 
HB(min) 18:22-7-1:1 9.80 0.27 0.96 11:11-5-1:1 4.74 0.29 0.95 
HB(max) 12:16-8-1:1 11.77 0.31 0.94 15:15-6-1:1 6.03 0.33 0.94 
HV(min) 24:28-8-1:1 8.71 0.24 0.97 17:17-7-1:1 6.50 0.32 0.94 
HV(max) 15:19-8-1:1 9.17 0.22 0.97 16:16-4-1:1 6.23 0.33 0.93 

Table 2. Parameters of computed neural networks for rolled steels after quenching, tempering and normalizing 

Quenched and tempered Normalised 
Properties of 
rolled steel 

Network 
architecture 

average 
absolute 

error 

standard 
deviation 

ratio 

Pearson 
corella-

tion 

network 
architecture 

average 
absolute 

error 

Standard 
deviation 

ratio 

Pearson 
corella-

tion 
R0,2 21:23-26-13-1:1 35.11 0.18 0.98 17:17-9-5-1:1 7.13 0.20 0.98 
Rm 21:23-7-7:1 25.48 0.16 0.98 17:17-12-6-1:1 13.15 0.18 0.98 
A5 19:21-17-11-1:1 0.97 0.38 0.92 14:14-6-1:1 1.05 0.30 0.95 
Z 17:19-13-1:1 1.41 0.35 0.93 13:13-4-1:1 1.19 0.31 0.95 
KV(min) 9:9-6-1:1 8.86 0.38 0.92 10:10-5-1:1 20.47 0.41 0.91 
KV(max) 19:21-7-1:1 8.48 0.33 0.94 16:16-6-1:1 19.08 0.37 0.92 
KCU2(min) 17:19-9-1:1 4.91 0.20 0.97 14:14-8-1:1 10.39 0.35 0.93 
KCU2(max) 18:20-8-1:1 6.57 0.26 0.96 16:16-11-1:1 12.16 0.38 0.92 
HB(min) 13:13-8-1:1 8.29 0.29 0.98 8:8-5-1:1 5.84 0.33 0.94 
HB(max) 10:12-6-1:1 8.95 0.22 0.97 12:12-8-1:1 4.76 0.28 0.92 
HV(min) 16:18-12-4-1:1 12.40 0.21 0.97 18:18-8-1:1 5.52 0.33 0.94 
HV(max) 19:19-12-8-1:1 13.94 0.27 0.96 10:10-9-1:1 6.01 0.31 0.94 

To fulfil all requirements a material science virtual laboratory has been developed. It is 
located in the virtual reality an open, academic, research, simulation and teaching 
environment, which makes possible researches on selected mechanical properties  
of structural steels [47-48]. The laboratory was divided into two parts with different 
functionality. The first part is application "NeuroLab" which use artificial intelligence 
algorithms to predict the mechanical properties of non-alloy and alloy structural steel. It is 
an application virtual laboratory, in which on the basis of the input steels manufacturing 
conditions is possible to determine its mechanical properties without the need for real 
examinations. Also possible is the reversed inference, namely on the basis of mechanical 
properties values is possible to determine steel's production conditions.  
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a)                     b) 

   
c)           d) 

   

Fig. 5. Application materials science virtual laboratory  - NeuroLab 1.0 a) input parameters card, b) predicted results 
card, c) relation charts card, d) neural networks description card. 

The application interface consists of four cards. Input parameters card (Fig. 5a) is used 
for data input about investigated steel. Predicted results card (Fig. 5b) is used for computation 
results presentation. Relation chart card (Fig. 5c) is used to generate dependency graphs 
between the mechanical properties of steel and the production conditions used for their 
estimation. Neural network description card (Fig. 5d) presents information about the neural 
networks that were used for the construction of the structural steel dependency model. This 
model is applied in this software. Results of computational experiments are presented in an 
open form in the application window or printed as the investigation protocol of the mechanical 
and technological properties as print the test protocol of mechanical and technological in 
accordance with [51]. Relations between production conditions and mechanical properties are 
generated in the form of graphs in a separate window [1-2]. 

Network part of materials science virtual laboratory is a tool with extended functionality 
in relation to the NeuroLab application. This is a network laboratory placed in the Internet on 
e-Learning Platform of the Institute of Engineering Materials and Biomaterials. This same 
computational model of structural steel’s dependencies is applied in network part, so it is 
possible to perform the same examination range, which can be performed using the application 
part of virtual laboratory. However, there are differences in examination methodology. 
Opposite to the application part of the laboratory, in network part user do not receive the 
results of examinations in the open form. The modelling results are stored in a file, which is  
a virtual representation of real steel sample in virtual world. In order to obtain the results this 
file should be placed in machine simulators. Examination of created material model 
mechanical properties and material structures consists of exact research equipment 
representation with an exact reproduction of the device’s research methodology. Only after the 
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examination performed in the virtual environment, user gets the property examination result 
(or an error message when the examination failed because of an error). On (Fig. 6.) examples 
of the investigative equipment simulations available in the laboratory along with the panel for 
generating files representing material samples is presented. The research methodology with 
use of simulations is exactly the same as the real device [1-2]. 

 
a)            b)     c)          d) 

    
e)            f)     g)             h) 

   

Fig. 6. Simulation of laboratory equipment installed in network material science virtual laboratory, a) light microscopy, 
b) laser scanning confocal microscope, c) universal hardness tester, d) scanning electron microscope, e) surface heater, 

f) tensile machine, g) Charpy pendulum machine, h) samples file generation panel 

5. THE VERIFICATION OF EXPERIMENTAL AND VIRTUAL INFLUENCE 
EXAMINATIONS OF PRODUCTION DESCRIPTORS ON MECHANICAL 

PROPERTIES OF STRUCTURAL STEELS PERFORMED WITH USE  
OF MATERIALS SCIENCE VIRTUAL LABORATORY 

In order to experimental verification of computational model successively three aspects 
has been emerged. The first describes the experimental verifications aimed in the correctness 
verification of the computational model developed in order to answer the question whether it 
is possible to perform virtual material examinations exclusively in the virtual environment. 
This was followed by virtual materials researches aimed to determine the influence, which 
the structural steel’s mechanical properties have on steels descriptors, such as the 
concentration of chemical elements, the conditions of heat and plastic treatment and 
geometrical dimensions. The last of these activities was to design a chemical composition 
and heat treatment conditions of two hypothetical structural steels to meet the client's 
requirements about values of mechanical properties.  

For verification purposes, an experimental set of vectors describing the material 
descriptors and steel's mechanical properties has been developed. These vectors describe 
each of the 135 types of examined steel. To exclude the possibility of adjusting the artificial 
neural network only to the products of one manufacturer's material vectors, verification 
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samples were collected from a different manufacturer. Samples, produced from these types 
of steel, were examined in order to obtain verification vectors. To minimize differences 
between training and validation data, material researches has been performed in the same 
way and using the same equipment, that were used in the main researches. In addition, the 
vectors used for comparative researches were constructed in the same way as the vectors 
used for training of artificial neural network used in the calculation model of dependences in 
to structural steel. Vectors, in which values of material descriptors or mechanical properties 
went beyond the accepted ranges for the vectors used for construction of artificial neural 
networks, were rejected. The results obtained by virtual examination have been compared 
with those obtained experimentally in a real laboratory.  

As example, the influence analysis of the admixtures concentration on the mechanical 
properties is presented. Three types of non-alloy structural steels for general use described in 
[52] were selected for investigations. Steel signatures and chemical compositions are 
introduced in Table 3. The material was delivered as forged, normalised round rods with 
diameter Φ100mm. Treatment parameters are: temperature: 880ºC, time: 60min, cooling 
medium: air. Material descriptors were inputted into material science virtual laboratory. The 
mechanical properties estimation was performed for every single virtual sample. Results 
obtained with use of this method were compared with results obtained by use of real 
material investigations. All are introduced in Table 4. It was found, that all estimated results 
are correct for all examined steel samples, because all three steel species were recognised 
correctly, and differences among predicted and measured values of mechanical properties 
are very small and predicted results did not exceed the neural network tolerance values for 
corresponding property. NeuroLab system has the ability to generate relation graphs between 
the mechanical properties of steel and parameters used to their estimation. Possible is the 
examination of the influence of any parameter from the input parameters on the value of any 
mechanical properties from the predicted results, when the rest of parameters remain 
unchanged. The next stage of investigative work was the analysis how big is the influence  
 

Table 3. Chemical composition of examined non-alloy steels 

steel signature C Mn Si P S Cr Ni Al 
S235J2G3 0.16 0.81 0.22 0.01 0.02 0.13 0.09 0.04 
S275JR 0.18 0.7 0.31 0.01 0.01 0.11 0.13 0.02 

S355K2G3 0.20 1.12 0.35 0.04 0.02 0.01 0.04 0.04 

Table 4. Comparison between measured and predicted mechanical properties of examined non-alloy steels 

Property measured Predicted Measured predicted Measured Predicted 
Material S235J2G3 S235J2G3 S275JR S275JR S355K2G3 S355K2G3 

R0,2 [MPa] 307 306 302 304 362 379 
Rm [MPa] 461 467 506 502 573 596 

A5 [%] 33.8 34.0 35.5 33.8 31.0 27.6 
Z [%] 64.1 65.7 59.9 62.3 52.0 56.0 
KV [J] 137-143 108-143 124-142 111-126 102-139 106-113 

HB 112-129 124-134 143-146 138-146 149-159 155-162 
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of the  admixtures  concentration  on  steels  mechanical properties. The  influence graphs 
were generated with use of NeuroLab among estimated properties and the concentration  
of admixtures. The concentration ranges are: Mn to 1.5%, Si to 0.5%, P to 0.05%, S to 
0.05%. Influence graphs are presented on Figs. 7-9.  

 

 

 

Fig. 7. Influence of manganese and silicon concentration on selected mechanical properties of S235J2G3 steel 

 

Fig. 8. Influence of manganese and sulphur concentration on selected mechanical properties of S275JR steel 

 

Fig. 9. Influence of silicon and phosphorus concentration on selected mechanical properties of S355K2G3 steel 



Leszek Adam DOBRZAŃSKI, Rafał HONYSZ 

 

 

114 

The first design task for the virtual science virtual laboratory was to design a steel 
type, which fulfils the strict delivery conditions for concentrations of chemical elements. 
Demanded by the virtual client steel chemical composition is presented id Table 9. This 
is the 34CrNiMo6 steel produced in accordance with [53]. Steel has been heat and 
plastic treated to appropriate size. Processing conditions and geometric dimensions  
of the product are introduced in Table 5. Virtual client's demand was that steels 
chemical composition must be adapted to fulfil strictly defined properties with 
unchanged treatment conditions. For the chemical composition analysis eight chemical 
elements was selected - carbon, manganese, silicon, chromium, nickel, molybdenum, 
vanadium and titanium. The second task was to design virtual steel, which meets strict 
delivery conditions by modifying only the conditions of heat treatment. Chemical 
composition of base steel supplied by the client (C45R according to [54]) is given in 
Table 5. Treatment conditions and geometric dimensions of the product are introduced 
in Table 7. This time, the virtual client's demand was matching of steel’s heat treatment 
condition. Strictly defined properties with unchanged chemical composition should be 
achieved. All assumptions are summarized in Table 6. Virtual research project in first 
task consisted in finding such a range of concentrations of given elements, while 
keeping the other concentrations and treatment conditions unchanged in order to fulfil 
all conditions for steel properties defined by a virtual client. Virtual research project in 
the second task included the search for such ranges of temperature and time  
of quenching and tempering. All conditions for steel properties defined by a virtual 
client should be fulfilled without changes in the steel’s chemical composition. 

Table 5. Chemical composition of examined base steels 

steel sign C Mn Si P S Cr Ni Mo W V Ti Cu Al 
34CrNiMo6 0.32 0.52 0.16 0.009 0.011 1.48 1.43 0.15 0 0 0 0.19 0 

C45R 0.47 0.61 0.39 0.021 0.018 0.31 0.24 0.005 0.002 0.013 0 0.03 0.035 

Table 6. Shape and head treatment conditions of examined base steels 

quenching tempering steel 
signature temperature [°C] time [min] coolant temperature [°C] time [min] coolant 

shape 

34CrNiMo6 860 180 oil 580 270 air Φ210 
C45R 880 60 oil 690 60 air Φ100 

Table 7. The required mechanical properties of structural steels for quenching and tempering 

Property 34CrNiMo6 C45R 
R0.2 min. 680 MPa 750-850 MPa 
Rm 880-1080 MPa 1200-1320 MPa 
A5 min. 13% min. 15% 
KV min 40J min 40 J 
HB 277-285 290-300 

  

The results of the analysis are performed in Table 8 for the first task and in Table 10 for 
the second task. Table 9 shows the results of properties modelling of 34CrNiMo6 steel before 
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and after the modification of chemical composition, Table 11 shows the results of properties 
modelling of C45R steel before and after the modification of heat treatment conditions. The 
relative elongation was not included in examinations, because this condition was already 
fulfilled the base steel. To verify the operations correctness, steels with revisited descriptors 
have been manufactured in a factory. Steels from both tasks were marked with symbols PR1 
and PR2. A modified chemical composition of steel is summarized in Table 12, the modified 
heat treatment conditions of steel PR2 are summarized in Table 13. Produced steels after heat 
and plastic treatment were examined in real laboratory. Obtained results are presented together 
with the results of the virtual examinations performed with use of material science virtual 
laboratory in Table 14. Real examinations results are comparable with results of virtual 
examinations, which means, that the projecting operations were performed correctly. 

Table 8. Results of chemical composition modelling of alloy structural steel 34CrNiMo6 

Property %C %Mn %Si %Cr %Ni %Mo %V %Ti 
R0.2 [MPa] 0.34-0.47 1.01-1.58 * 0.31-0.93 1.68-2.19 * 1.97-2.08 * 0.21-0.89 * 0.02-0.198 --- **  
Rm [MPa] 0.35-0.48 0.68-1.47 0.57-1.12 1.25-2.19 * 1.86-2.08 * 0.29-1.09 0.092-0.296 0-0.082 
KVmin [J] 0.32-0.44 0.26-1.36 0.43-1.20 * 1.24-2.19 * 0-2.01 0-0.53 0-0.3 * 0-0.008 
KVmax [J] 0.34-0.60 * 0.52-1.58 * 0.14-1.20 * 1.78-2.19 * 0-2.01 0.03-0.49 0.06-0.3 * 0-0.124 

HBmin 0.38-0.49 1.05-1.48 0.45-0.74 1.86-2.18 --- **  0.55-1.09 0.16-0.3 0.026-0.084 
HBmax 0.36-0.40 0.92-1.28 0.36-0.54 1.75-2.02 --- **  0.42-0.66 0.094-0.272 0.006-0.012 
Range 0.38-0.40 1.05-1.28 --- 1.86-2.02 --- --- 0.16-0.198 --- 

*  - range of property variability partially exceeded the permissible range of chemical element concentration 
** - range of property variability entirely exceeded the permissible range of chemical element concentration 

Table 9. Verification of the mechanical properties of 34CrNiMo6 steel before and after chemical modification 

modified C modified Mn modified Cr modified V 
Property 

not 
modified minimum maximum minimum maximum Minimum maximum minimum maximum 

R0.2 [MPa] 660 741 770 684 717 696 712 836 880 
Rm [MPa] 910 978 1001 1014 1060 960 981 965 981 

A5 [%] 17.5 16.8 16.6 16.8 16.6 17.7 16.8 16.7 16.5 
Z [%] 54.7 54.0 53.8 54.1 54.0 54.7 54.8 54.8 54.9 
KV [J] 96-104 78-95 72-92 86-91 85-91 90-99 82-93 82-93 80-91 

HB 261-266 278-285 283-292 278-284 285-292 278-292 284-292 278-281 280-284 

Table 10. Results of heat treatment temperature and time modelling of non-alloy structural steel C45R 

Property quenching temperature [°C] quenching time [min] tempering temperature [°C] quenching time [min] 
R0.2 [MPa] 818-877 10-150 * 592-671 61-85 
Rm [MPa] 844-887 77-150 * 486-660 86-121 
KVmin [J] 760-858 63-150 480-740 * 12-120 * 
KVmax [J] 762-888 41-89 480-740 * 12-120 * 

HBmin 838-856 10-102 * 589-628 68-76 
HBmax 848-872 68-150 618-660 62-72 
Range 848-856 77-89 658-662 --- 

* - range of property variability partially exceeded the permissible range of heat treatment temperature or time 
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Table 11. Verification of the mechanical properties of C45R steel before and after heat treatment conditions modification 

modified quenching temperature  modified quenching time  modified tempering temperature  
Property 

not 
modified minimum maximum minimum maximum minimum maximum 

R0.2 [MPa] 746 792 779 763 761 817 805 
Rm [MPa]  1154 1211 1201 1200 1216 1224 1218 

A5 [%] 21.0 18.5 19.1 19.6 19.4 18.1 18.4 
Z [%] 42.7 42.6 42.6 42.7 42.7 41.7 41.7 
KV [J] 33-44 43-62 40-58 49-76 58-99 70-92 71-93 

HB 279-284 294-300 290-297 292-295 291-294 292-300 290-298 

Table 12. Chemical composition of examined newly designed steels 

steel sign. C Mn Si P S Cr Ni Mo W V Ti Cu Al 
PR1 0.38 0.53 0.17 0.008 0.012 1.49 1.43 0.150 0 0 0 0.19 0.010 
PR2 0.45 0.64 0.39 0.017 0.016 0.30 0.24 0.005 0.002 0.012 0 0.03 0.031 

Table 13. Shape and head treatment conditions of examined newly designed steels 

quenching tempering steel 
signature temperature [°C] time [min] coolant temperature [°C] time[min] coolant 

shape 

PR1 860 180 oil 580 270 air Φ210 
PR2 880 60 oil 690 60 air Φ100 

Table 14. Comparison between measured and predicted mechanical properties of newly designed steels 

property measured predicted measured predicted 
Material PR1 PR2 

R0.2 [MPa] 744 748 797 800 
Rm [MPa] 980 977 1216 1218 
A5 [%] 16.8 16.3 16.7 16.3 
Z [%] 54.2 55.1 37.7 36.9 
KV [J] 77-94 78-103 96-102 88-113 

HB 277-286 280-284 289-296 291-303 

6. SUMMARY 

On the basis of experimental results obtained in the virtual and real examinations  
of structural steels mechanical properties it has been proved, that the selection of production 
descriptors of structural steels, can be obtain by using a computational model developed 
using the artificial intelligence tools and virtual environment. This model is providing the 
impact study of these factors on the mechanical properties of steel only in computing 
environment. Results, obtained during virtual experiments, indicates on very good 
compatibility of the model with the data obtained experimentally in real laboratory. This 
demonstrate the effectiveness of the model application for the prediction, simulation and 
modelling of the steel properties and also production descriptors. of newly designed steels.  

The model calculation correctness has been fully verified by experiment. Materials 
researches performed in the virtual environment, both, in range of determining the 
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mechanical properties and in the field of chemical composition and treatment conditions 
design, are consistent with the results obtained during the real research in real laboratory. 
Consistency was observed in the whole range of steel descriptor variation: of concentrations 
of chemical elements, heat and mechanical treatment conditions and mechanical properties 
of examined structural steels. Developed virtual environment enables the modelling of new, 
non-standard types of steel. Through the determination of relations between selected 
mechanical properties and the steel descriptors at specified range, it is possible to obtain 
data on the hypothetical and the newly designed materials, which have not been produced 
yet and existing only in virtual environment. Possibility of designing new materials with 
unique properties strictly adjusted to actual customer needs is crucial in achieving of the 
market success. The presented examples of computer aid in structural steel production 
showing a potential application possibilities of this methodology to support the production 
of any group of engineering materials. 
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