PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some properties of T-metric spaces and a common fixed point theorem

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we introduce the new definitions of T-metric space and give some properties of it. Also, we prove a common fixed point theorem for for four mappings under the condition of weakly compatible in complete T-metric spaces. A lot of fixed point theorems on ordinary metric space are special case of our main result, since every ordinary metric space is also T-metric space.
Słowa kluczowe
Rocznik
Tom
Strony
105--118
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
  • Department of Mathematics Islamic Azad University Qaemshahr Branch, Qaemshahr, P.O.Box 163, Iran
autor
  • Department of Mathematics Faculty of Science and Arts Kirikkale University 71450 Yahsihan, Kirikkale, Turkey
autor
  • Department of Mathematics Islamic Azad University Science and Research Branch 14778 93855 Tehran, Iran
Bibliografia
  • [1] Agarwal R.P., O’Regan D., Sahu D.R., Theory for Lipschitzian-Type Mappings with Applications, Fixed Point, Springer, 2009.
  • [2] Aliouche A., Popa V., Common fixed point theorems for occasionally weakly compatible mappings via implicit relations, Filomat, 22(2)(2008), 99-107.
  • [3] Altun I., Turkoglu D., Some fixed point theorems for weakly compatible mappings satisfying an implicit relation, Taiwanese J. Math., 13(4)(2009), 1291-1304.
  • [4] Berinde V., Iterative Approximation of Fixed Points, Springer, 2007.
  • [5] Ciric Lj.B., Fixed Point Theory, Contraction Mapping Principle, Faculty of Mechanical Engineering, Beograd, 2003.
  • [6] Granas A., Dugundji J., Fixed Point Theory, Springer, 2010.
  • [7] Imdad M., Kumar S., Khan M.S., Remarks on some fixed point theorems satisfying implicit relation, Rad. Math., 11(2002), 135-143.
  • [8] Jungck G., Rhoades B.E., Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math., 29(3)(1998), 227-238.
  • [9] Mihet D., A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems, 144(3)(2004), 431-439.
  • [10] Popa V., Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstratio Math., 32(1)(1999), 157-163.
  • [11] Rao K.P.R., Kishore G.N.V., Common fixed point theorems in ultra metric spaces, Punjab University Journal of Mathematics, 40(2008), 31-35.
  • [12] Sedghi S., Altun I., Shobe N., A fixed point theorem for multi-maps satisfying an implicit relation on metric spaces, Appl. Anal. Discrete Math., 2(2)(2008), 189-196.
  • [13] Turkoglu D., Fixed point theorems on uniform spaces, Indian J. Pure Appl. Math., 34(3)(2003), 453-459.
  • [14] Rooyij A.C.M.V., Non-Archimedean Functional Analysis, Marcel Dekker, New York, 1978.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f796184-471a-4df3-ada3-70d1e6735f54
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.