Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Nonlinear motion of the microcantilever probe in the Atomic Force Microscope (AFM) has been extensively studied considering mainly the van der Waals forces. Since the behavior of the microcantilever is vital to quality of generated images, the study of control strategies that force the probe to avoid undesired behavior such as chaotic motion, is also of significant importance. A number of published works has shown that the microcantilever is subject to chaotic motion for a certain combination of parameters. For such a parameter combination, the control system must suppress the chaotic motion. Here, an study of the AFM mathematical model is presented, aiming to find a region of operation of the AFM where the motion is chaotic. In order to suppress the chaotic motion, a periodic orbit of the system is obtained, and the controller forces the system to that periodic orbit. Two control strategies are used, namely: The State Dependent Riccati Equation (SDRE) and the Optimal Linear Feedback Control (OLFC). Both control strategies consider the complete nonlinearities of the system, and the OLFC guarantees the global stability. The numerical simulations carried out showed the efficiency of the control methods as well as the sensitivity of each control strategy to parametric errors. Without the parametric errors, both control strategies were effective in maintaining the system into the desired orbit. On the other hand, in the presence of parametric errors, the SDRE technique was more robust than the OLFC.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
93--106
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
- Universidade Estadual Paulista – UNESP, Rio Claro-SP, Brazil
autor
- Universidade Tecnológica Federal do Paran´a – UTFPR, Ponta Grossa-PR, Brazil
autor
- Universidade Estadual Paulista – UNESP, Sorocaba-SP, Brazil
Bibliografia
- 1. Ashhab M., Salapaka M.V., Dahleh M., Mezic I., 1999a, Dynamical analysis and control of microcantilevers, Automatica, 35, 10, 1663-1670
- 2. Ashhab M., Salapaka M., Dahleh M., Mezić I., 1999b, Melnikov-based dynamical analysis of microcantilevers in scanning probe microscopy, Nonlinear Dynamics, 20, 197-220
- 3. Balthazar J.M., Tusset A.M., Souza S.L.T.D., Bueno A.M., 2013, Microcantilever chaotic motion suppression in tapping mode atomic force microscope, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 227, 8, 1730-1741
- 4. Bhushan B., 2004, Springer Handbook of Nanotechnology, Springer, Berlin
- 5. Bueno A.M., Balthazar J.M., Piqueira J.R.C., 2010, Phase-locked loop application to frequency modulation-atomic force microscope, Proceedings of the 9th Brazilian Conference on Dynamics, Control and their Applications, DINCON 2010, 343-348, Serra Negra, SP.
- 6. Bueno A.M., Balthazar J.M., Piqueira J.R.C., 2012, Phase-locked loops lock-in range in frequency modulated-atomic force microscope nonlinear control system, Communications in Nonlinear Science and Numerical Simulation, 17, 7, 3101-3111
- 7. Couturier G., Aim´e J., Salardenne J., Boisgard R., 2001, A virtual non contact-atomic force microscope (NC-AFM): Simulation and comparison with analytical models, The European Physical Journal – Applied Physics, 15, 2, 141-147
- 8. Fr´etigny C., 2007, Atomic force microscopy, [In:] Nanoscience, Dupas C., Houdy P., Lahmani M., Editors, 91-119, Springer, Berlin, Heidelberg
- 9. Giessibl F., 1995, Atomic resolution of the silicon (111)-(7x7) surface by atomic force microscopy, Science, 267, 5194, 68-71
- 10. Hansma P.K., Cleveland J.P., Radmacher M., Walters D.A., Hillner P.E., Bezanilla M., Fritz M., Vie D., Hansma H.G, Prater C.B., Massie J., Fukunaga L., Gurley J., Elings V., 1994, Tapping mode atomic force microscopy in liquids, Applied Physics Letters, 64, 13, 1738-1740
- 11. Hornstein S., Gottlieb O., 2008, Nonlinear dynamics, stability and control of the scan process in noncontacting atomic force microscopy, Nonlinear Dynamics, 54, 93-122, doi: 10.1007/s11071-008-9335-5
- 12. Hu S., Raman A., 2006, Chaos in atomic force microscopy, Physical Review Letters, 96, 3, 036107
- 13. Jalili N., Dadfarnia M., Dawson D.M., 2004, A fresh insight into the microcantilever-sample interaction problem in non-contact atomic force microscopy, Journal of Dynamic Systems, Measurement, and Control, 126, 2, 327-335
- 14. Mestrom R.M.C., Fey R.H.B., van Beek J.T.M., Phan K.L., Nijmeijer H., 2007,Modeling the dynamics of a MEMS resonator. Simulations and experiments, Sens Actuators A, 142, 3, 6-15
- 15. Morita S., Wiesendanger R., Meyer E., Giessibl F.J., 2009, Noncontact Atomic Force Microscopy, Springer, Berlin
- 16. Mracek C.P., Cloutier J.R., 1998, Control designs for the nonlinear benchmark problem via the state-dependent riccati equation method, International Journal of Robust and Nonlinear Control, 8, 4/5, 401-433
- 17. Nayfeh A.H., 1981, Introduction to Perturbation Techniques, Wiley, New York
- 18. Polesel-Maris J., Gauthier S., 2005, A virtual dynamic atomic force microscope for image calculations, Journal of Applied Physics, 97, 4, 044902
- 19. Rafikov M., Balthazar J.M., Tusset A.M., 2008, An optimal linear control design for nonlinear systems, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 30, 12, 279-284
- 20. Raman A., Melcher J., Tung R., 2008, Cantilever dynamics in atomic force microscopy, Nano Today, 3, 1/2, 20-27
- 21. Rutzel S., Lee S.I., Raman A., 2003, Nonlinear dynamics of atomic-force-microscope probes driven is Lennard-Jones potentials, Proceedings of the Royal Society of London, 459, 1925-1948
- 22. Salarieh H., Alasty A., 2009, Control of chaos in atomic force microscopes using delayed feedback based on entropy minimization, Communications in Nonlinear Science and Numerical Simulation, 637-644
- 23. Shirazi M. J., Vatankhah R., Boroushaki M., Salarieh H., Alasty A., 2011, Application of particle swarm optimization in chaos synchronization in noisy environment in presence of unknown parameter uncertainty, Communications in Nonlinear Science and Numerical Simulation, 17, 12, 742-753
- 24. Tusset A.M., Balthazar J.M., 2012, On the chaotic suppression of both ideal and non-ideal Duffing based vibrating systems, using a magnetorheological damper, Differential Equations and Dynamical Systems, 1-11, doi: 10.1007/s12591-012-0128-4
- 25. Tusset A.M., Balthazar J.M., Bassinello D.G., Pontes B.R., Felix J.L.P., 2012a, Statements on chaos control designs, including a fractional order dynamical system, applied to a “MEMS” comb-drive actuator, Nonlinear Dynamics, 69, 4, 1837-1857, doi: 10.1007/s11071-012-0390-6
- 26. Tusset A.M., Balthazar J.M., Chavarette F.R, Felix J.L.P., 2012b, On energy transfer phenomena, in a nonlinear ideal and nonideal essential vibrating systems, coupled to a (MR) magneto-rheological damper, Nonlinear Dynamics, 69, 4, 1859-1880, doi: 10.1007/s11071-012-0391-5
- 27. Tusset A.M., Balthazar J.M., Felix J.L.P., 2012c, On elimination of chaotic behavior in a non-ideal portal frame structural system, using both passive and active controls, Journal of Vibration and Control, 1-11, doi: 10.1177/1077546311435518
- 28. Yabuno H., 2008, Stabilization and utilization of nonlinear phenomena based on bifurcation control for slow dynamics, Journal of Sound and Vibration, 766-780.
- 29. Yamasue K., Hikihara T., 2006, Control of microcantilevers in dynamic force microscopy Rusing time delayed feedback, Review of Scientific Instruments, 053703.1-053703.6
- 30. Yamasue K., Kobayashi K., Yamada H., Matsushige K., Hikihara T., 2009, Controlling chaos in dynamic-mode atomic force microscope, Physics Letters A, 373, 35, 3140-3144
- 31. Zhang W.-M., Meng G., Zhou J.-B., Chen J.-Y., 2009, Nonlinear dynamics and chaos of microcantilever-based tm-afms with squeeze film damping effects, Sensors, 9, 5, 3854-3874
- 32. Zhong Q., Inniss D., Kjoller K., Elings V., 1993, Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy, Surface Science Letters, 290, 1/2, L688-L692
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f775264-56ab-498b-859e-ac9703f28894