
Scientific Journals Zeszyty Naukowe
of the Maritime University of Szczecin Politechniki Morskiej w Szczecinie

Zeszyty Naukowe Politechniki Morskiej w Szczecinie 77 (149) 99

2024, 77 (149), 99–106 Received: 01.02.2024
ISSN 2392-0378 (Online) Accepted: 27.03.2024
DOI: 10.17402/601 Published: 31.03.2024

High availability model of a web service from a system
administrator’s perspective

Robert Tomasz Wirski
 https://orcid.org/0000-0002-1654-2109

Koszalin University of Technology, Faculty of Electronics and Informatics
2 Śniadeckich St., 75-453 Koszalin, Poland
e-mail: robert.wirski@tu.koszalin.pl

Keywords: web service, cloud computing, high availability, high reliability, operating system, redundancy,
single point of failure, algorithm
JEL Classification: L86

Abstract
Based on cloud providers’ reports on service outages, it has become clear that how a web service is deployed is
of great importance. Clearly, using one service supplier is insufficient because it introduces single points of fail-
ure. In this paper, a novel high-availability multi-cloud model intended for a web service is proposed, which
is free from such shortcomings yet preserves convenient assets of computing clouds. The methodology used
to improve web service availability should involve several cloud suppliers and devise management techniques
that control access to them. This is achieved by means of the server availability tracking algorithm, which con-
trols client apps’ access to the service. Moreover, typical benefits and problems involved in choosing IT infra-
structure for a web service are elaborated. State-of-the-art cloud computing models, such as IaaS, PaaS, SaaS,
BPaaS, and INaaS, are outlined. Operating systems statistics used for web services are included. Open-source
monitoring software solutions are gathered, which help administrators to monitor and govern web servers.

Introduction

In this paper, a web service is a combination
of hardware (computers) and software that processes
the information and facilitates data sharing through
users running clients’ apps. The term “system” is
also used for a similar meaning, especially when
it presents a wider context. Starting a web service
is a complex problem involving multiple arrange-
ments to be made and facing competing priorities.
Depending on company size and internal organi-
zation, decision-making patterns may vary. Usual-
ly, they are based on one or a combination of the
following:
• Personal preference of employed system admin-

istrators,
• Management decisions,
• Repetition of previously made decisions.

As there is no “best” solution, the result is a trade-
off that impacts the service performance, reliability,
and costs (Lang, Wiesche & Krcmar, 2018). Some
common challenges are listed below, which should
be considered when starting a web service.

The high availability (HA) of a system means
that it is capable of performing the intended tasks
in a premised way and time-of-operation (Atchison,
2020). Reliability in this context is a similar term
‒ it guarantees the correctness of systems opera-
tions. It is the responsibility of the system design-
er to ensure its reliability. Nowadays, systems are
often implemented using dedicated hosting services.
In such a case, availability is taken up by a cloud
provider that provides dedicated solutions for this
matter, usually in the form of load balancers. They
redistribute tasks over a set of available resources,
like hardware or virtual servers (Figure 1).

Robert Tomasz Wirski

100	 Scientific	Journals	of	the	Maritime	University	of	Szczecin	77	(149)

Implementing the web service using local serv-
ers is especially reasonable if the company already
runs its own server rooms with some free space and
employs technical and IT administration staff. Here,
the main costs would be the purchase of new hard-
ware and energy. Unless it is just a single server rack,
building a server room is both a costly and com-
plex matter due to standards requirements (ANSI/
BICSI, 2019), technology (Cisco, 2024), and meet-
ing contradictory demands (Lowe, Green & Davis,
2016; Carapola, 2018; Atchison, 2020; Geng, 2021).
There is also a space for scientific research in this
area (Jadhav & Chaudhari, 2015; Ahmed, Bollen
& Alvarez, 2021; Clement et al., 2023). The com-
pany is fully responsible for maintaining both hard-
ware and software for their service. On the benefit
side, such an approach does not depend on a third
party, which eliminates risks related to service price
changes or contract termination perturbations.

In the case of the dedicated servers hosting mod-
el, the company leases servers located in the host
provider’s server rooms connected to the internet
with prearranged bandwidth. They can be accessed
virtually via www panels, ssh, virtual desktops, etc.
The hirer is fully responsible for installing and man-
aging software. However, there are operating system
images prepared to initiate the hosts, and the user
is usually provided with a backup facility, typical-
ly 100 GB. The hosting provider is responsible for
keeping the hardware up and running while provid-
ing tools to protect it from denial of service (DDoS)
attacks. The advantage of such an approach is that

the company does not need to run its own server rooms.
There is no hardware management and servicing,
meaning that employment costs can be reduced to
just IT administrators and, possibly, software devel-
opers. The disadvantage is a dependency on a third
party. So, migration scenarios should be ready in case
of problems with the suppliers. Because the compa-
ny data resides in a third-party location, a problem
with data security arises. It is especially important
when personal or sensitive data is collected. A legal
agreement with the host vendor is a must in this case.

Cloud hosting is a relatively new area of comput-
ing that is under active development by host provid-
ers. The definition of cloud computing according to
the National Institute of Standards and Technology
(Mell & Grance, 2011): “Cloud computing is a mod-
el for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable
computing resources (e.g., networks, servers, stor-
age, applications, and services) that can be rapidly
provisioned and released with minimal management
effort or service provider interaction.”

It is characterized by on-demand self-service,
broad network access, resource pooling, rapid elas-
ticity, and measured service. Typically, cloud com-
puting is classified into the following models:
• Infrastructure-as-a-service (IaaS),
• Platform-as-a-service (PaaS),
• Software-as-a-service (SaaS),
which are further generalized into (Ruparelia, 2015):
• Process-as-a-service (BPaaS),
• Information-as-a-service (INaaS).

Figure 1. Distributing of incoming network traffic by means of a load balancer

High	availability	model	of	a	web	service	from	a	system		administrator’s	perspective

Zeszyty Naukowe Politechniki Morskiej w Szczecinie 77 (149) 101

In the IaaS model, a set of virtual raw IT resources
is provided for the users who can develop their proj-
ects without local infrastructure. The resources are
customizable and can be easily fitted to users’ needs.
In PaaS, developers are provided with a platform that
can be used to develop software without the need to
maintain a local hardware infrastructure. It is cen-
tralized, so collaboration between teams is easy to
achieve. The SaaS model is for those who need soft-
ware to meet their specific business needs. Compa-
nies choosing such a model are required to maintain
internet access to their departments only and pay
a chosen subscription fee. BPaaS is at an even great-
er level of abstraction, where no programming is
required, and the cloud provider offers ready-to-use
solutions for a specific business model. The INaaS
model is relatively new, and some ambiguities can
be observed. For example, a similar acronym is
used for integration-as-a-service, indoors-naviga-
tion-as-a-service, and innovation-as-a-service. How-
ever, the term “information-as-a-service” seems to
be the most widely accepted (Ruparelia, 2015).
There are few commercial systems that claim to be
built on this model (Table 1).

Table 1. Commercial examples of cloud computing models

Model
acronym

Commercial examples of cloud
computing models

IaaS Amazon Web Services, Microsoft Azure,
Google Compute Engine

PaaS Google App Engine, Windows Azure,
Adobe Commerce

SaaS Google Apps, Microsoft Office 365,
Dropbox, GitHub

BPaaS eBay auction service, PayPal service
INaaS BEA AquaLogic Data Services Platform

Recently, there has been interest in the multi-cloud
or hybrid-cloud approach that involves two or more
cloud providers (Petcu, 2013). Comparison of two
research projects of PaaS multi-cloud architectures,
namely ASCETiC (http://www.ascetic-project.eu)
and SeaClouds (http://seaclouds-project.eu), is pro-
vided in previous work (Ferrer, Pérez & González,
2016). In other research (Sen et al., 2019; Rama-
murthy et al., 2020), the authors discussed cost and
timing optimization of resource selection in a multi-
cloud environment. However, there are no papers
known to the author that deal with security or high
availability in multi-cloud models.

In the case of configuring local or dedicated
hosts, an operating system selection problem arises.

In Figure 2, the popularity of Unix versus Windows
is presented.

Windows
17.70 %

Non-Linux
45.10 %

Linux
37.20 %

Unix
82.30 %

Figure 2. Report on operating systems usage for websites
whose operating systems are known (W3Tech.com, 11
December 2023)

Clearly, Unix-like operating systems are more
frequently chosen for websites compared to their
Windows counterparts. Linux is used on 37.2 %
of Unix-like platforms. The most popular Linux
distros are Ubuntu, Debian, and CentOS (Figure 3).
Interestingly, 42.6 % of them remain unknown.

Ubuntu
31.60 %

Debian
16.70 %

CentOS
7.60 %

Red Hat
0.60 %

Gentoo
0.40 %

AlmaLinux
0.30 %

Fedora
0.20 %

Unknown
42.60 %

Figure 3. Linux distros popularity for websites (W3Techs.
com, 8 December 2023)

Typical duties of system administrators who deal
with security are:
• Monitoring network traffic,
• Monitoring system’s hardware and software,
• Creating backups and verifying their correctness,
• Patching firmware and software.

To remove human factors from the process,
a dedicated host managing software should be incor-
porated. Typically, its sales business model incorpo-
rates an open-source approach for a software core

Robert Tomasz Wirski

102	 Scientific	Journals	of	the	Maritime	University	of	Szczecin	77	(149)

expanded with more advanced modules and sup-
port based on a subscription basis. For example,
the following monitoring software is based on this
model:
• Nagios (www.nagios.org),
• Icinga (icinga.com),
• Zabbix (www.zabbix.com).

Several solutions exist to maintain server
infrastructure:
• Kubernetes (kubernetes.io),
• Forman (theforeman.org), Puppet (puppet.com),
• Proxmox (proxmox.com).

Cloud providers have their own or adopted tools
to support their clients in server orchestration, such
as:
• Azure Automation from Microsoft,
• AWS CloudFormation from Amazon.

Any infrastructure is prone to failure. Even
cloud providers encounter problems. In Table 2,
reports on outages of selected providers have been
collected.

Clearly, an administrator must consider web ser-
vice availability problems during the system design
and maintenance phases. In general, the host ven-
dors provide their own solutions to maintain HA.
In a typical HA model, shown in Figure 1, a client
application connects to the provider’s DNS to resolve
a service’s name into an IP address. When the IP has
been acquired, the app starts sending requests to
the hosts via load balancers. However, the presented
model suffers from several single points of failures
(SPOFs), which are:
• Edge routers,
• Load balancers,
• DNS servers.

Whenever any of the SPOF fails, the entire web
service is down. The idea presented in this paper is
to elaborate on a novel HA model that is free from

SPOFs without sacrificing the benefits of cloud
providers.

Methods

To overcome the shortcomings of a typical HA
model discussed in the Introduction, the author
determined the following set of demands:
1. No SPOFs are allowed.
2. The service infrastructure needs to be scalable.
3. The web service should be able to work correctly

even when only one cloud provider is active.
4. It should be possible to add another server to

the service, even when some hosting providers are
down.

5. When all infrastructure is down, the client app
should wait for any server to return to operation
and then restore the service gracefully (no app
restart needed).
In the following section, an original author’s con-

ception of HA is presented that fulfills the demands
listed above.

Results

In Figure 4, a novel HA model is presented. To
fulfill demands no. 1 and 2 in the Methods section,
at least two cloud suppliers need to be incorporated
into the service. It must be tailored in such a way
that only one cloud provider is enough to maintain
the service under a typical load. Scalability using
cloud resources or load balancing can also be used
for this task. To achieve this, three extensions need
to be implemented into the service:
1. Data synchronization between cloud providers,
2. Maintaining the system in case of malfunction,
3. A server availability tracking algorithm imple-

mented in the client app.

Table 2. Cloud providers report on service outages from April to July 2023 (https://isdown.app/blog/)

Provider

April 2023 May 2023 June 2023 July 2023
Total

incidents
Total

outage
Total

incidents
Total

outage
Total

incidents
Total

outage
Total

incidents
Total

outage
Time [h] Time [h] Time [h] Time [h]

AWS 6 12.4 1 1.3 2 4.5 2 4.3
Azure 1 4.4 0 0 3 26.3 3 26.4
DigitalOcean 8 30.3 13 428.7 7 49.7 5 12.8
Fly.io 9 21.1 7 14.3 8 92.5 5 6.1
Heroku 9 1239.9 11 590.4 5 787.3 4 526.2
Linode 1 11.5 10 490.3 10 66.1 10 122.1
Netlify 1 0.3 0 0 7 8.4 3 30.3
Vercel 5 14.4 15 59.3 7 10.2 11 93.4

High	availability	model	of	a	web	service	from	a	system		administrator’s	perspective

Zeszyty Naukowe Politechniki Morskiej w Szczecinie 77 (149) 103

Data synchronization between cloud providers

To maintain integrity between hosts, the synchro-
nization algorithm needs to be implemented. Depend-
ing on the operating system chosen for the hosts,
possible approaches vary. In the case of Linux sys-
tems, standard Unix tools can be used for this task
such as rsync. A single network file system (NFS) or
similar, connected to all the cloud providers, should
be avoided since it creates SPOFs. Disk synchroni-
zation between hosts can be performed intelligently
only when data is changing, possibly with additional
resynchronization once a day when the service load
is the lowest. In the case of databases, standard rep-
lication mechanisms can be used. Another approach
would be to write to all the databases on the fly when
needed.

Maintaining system operation in case of malfunction

The malfunction of the service is defined as a sit-
uation when there are problems with the infrastruc-
ture of one or more of the cloud providers. To ful-
fill demand no. 3 in the Methods section, the client
app needs to relocate to another working server.
To achieve this, it must be equipped with a server
availability tracking algorithm, which is described
in the next subsection. The system malfunction also
affects the data synchronization described above.
Trying to communicate with a server that is down
should be avoided because it generates timeouts,
which additionally slows down an already flawed

service. Instead, a monitoring system should be
implemented that informs the IT administrators
about the problems.

Server availability tracking algorithm

In the proposed HA model, resources are scat-
tered throughout several cloud suppliers. So, to
make them usable for the service, the client app
must track the availability of the servers, possibly
measuring a transfer speed, and decide which one
to use. In Figures 5‒7, the algorithm suited for
this task is outlined. It utilizes variables collected
in Table 3. The object xhr used here originates from
XMLHttpRequest API (https://developer.mozilla.
org/en-US/docs/Web/API/XMLHttpRequest_API).
The procedure should be initialized as follows:

xhr.onload = svrRespone;
xhr.onreadystatechange = svrMonitor;
xhr.onerror = svrError;
scanServers().
The algorithm is divided into four procedures due

to the asynchronous nature of the XMLHttpRequest
servers’ communication API. In scanServers(), the
number of active servers and the status of the ser-
vice are evaluated using active_servers and status
variables, respectively. At the end of the procedure,
a call to a currently selected server is initiated via
xhr.open(). When the server response arrives, svrRe-
sponse() is executed, and, if it is correct, the server is
considered active. It is also a suitable place to receive
the data of the service. If there are communication

Figure 4. High availability redundant model for a web service

Robert Tomasz Wirski

104	 Scientific	Journals	of	the	Maritime	University	of	Szczecin	77	(149)

 scanServers()

START

server_index <
servers_length – 1? server_index = 0no

yes

no

no

yes

yes

server_index++

active_servers == 0?

active_servers ==
server_length?

status = WARNING

status = OK

status = CRITICAL

active_servers == 0

xhr. open(servers[server_index])
xhr. send()

STOP

Figure 5. scanServers() procedure of the server availability tracking algorithm

Table 3. Variables used in server availability tracking algorithm

Name Type Description
servers_length integer number of structures in servers

server_index integer index of the currently tested server
active_servers integer number of servers with active variable

set to true
servers[0,..,server_length-1] struct {string: name, integer: tcp_port, boolean: active} list of all servers assigned for the service
status enumeration {OK, WARNING, CRITICAL} status of the internet service
xhr object with members: open, send, onload, onerror,

onreadystatechange, status, readyState
servers’ asynchronous communication

errors with the server, then svrError() is called,
which is considered a failure of the currently pro-
cessed host. Subsequent calls to scanServers() are
re-established in svrMonitor().

Conclusions

The sustainable availability of web services
remains crucial for their proper development. As

Reuters reported (https://www.reuters.com/article/
idUSKBN2B20NT/), due to a fire in an OVHcloud
SBG2 data center on the night of March 9‒10, 2021,
millions of web services went down. It also arose
that some of its backups were stored in the same
burned-out center, preventing users from restoring
their services (https://www.transatlantic-lawyer.
com/ovh-must-pay-more-than-400000-e-after-a-
fire-destroyed-itsdata-centers-why-this-decision-

High	availability	model	of	a	web	service	from	a	system		administrator’s	perspective

Zeszyty Naukowe Politechniki Morskiej w Szczecinie 77 (149) 105

is-important-for-hosting-providers-hosting-eu-
personal-data/). Clearly, HA problems are vital and
sometimes left unsolved by cloud providers.

In this paper, the extension of a standard sin-
gle-provider HA model into the multi-cloud one is
proposed. It is free from SPOFs and is scalable. It is
especially applicable for internet-oriented apps when
HA is required, such as supply ordering service,
warehouse management, or multimedia streaming
platforms. The proposed system has been imple-
mented practically in an audio streaming service
based on two web cloud providers. On the down-
side, it is more expensive because of the costs of sev-
eral cloud suppliers. Also, the client’s app requires
a server availability tracking algorithm to be imple-
mented. To fulfill demand no. 4 in the Methods sec-
tion, the system should be designed in such a way

that it is possible to augment the struct servers
(Table 3) using any active server. This would allow
for the addition of an extra fresh host to the service
in case of serious malfunction or DDoS attacks.
Satisfying demand no. 5 means a careful client app
design and tests that consider different malfunction
scenarios.

References

1. Ahmed, K.M.U., Bollen, M.H.J. & Alvarez, M. (2021)
A review of data centers energy consumption and reli-
ability modeling. IEEE Access 9, pp. 152536‒152563,
doi: 10.1109/ACCESS.2021.3125092.

2. ANSI/BICSI (2019) Data Center Design and Implemen-
tation Best Practices. ANSI/BICSI, 002-2019. Tampa, FL,
USA: BICSI.

3. Atchison, L. (2020) Architecting for Scale. Second Edition.
Sebastopol, CA, USA: O’Reilly Media, Inc.

 svrResponse() svrError()

START START

STOP STOP

STOP

servers[server_index].active = false
xhr.status == DONE?

servers[server_index].active = true

active_servers++

no

yes

Figure 6. svrResponse() and svrError() procedures of the server availability tracking algorithm

 svrMonitor()

START

STOP

STOP

xhr.readyState
== DONE?

xhr.status
== DONE?

setTimeout(scanServers, long_delay_ms); setTimeout(scanServers, short_delay_ms);

no

noyes

yes

Figure 7. svrMonitor() procedure of the server availability tracking algorithm

Robert Tomasz Wirski

106	 Scientific	Journals	of	the	Maritime	University	of	Szczecin	77	(149)

4. Carapola, A. (2018) The Data Center Builder’s Bible. s. l.
NewVista Advisors, LLC.

5. Cisco (2024) Cisco Validated Design Zone. [Online].
Available at: https://www.cisco.com/c/en/us/solutions/
design-zone.html [Accessed: January 30, 2024].

6. Clement, S., Burdett, K., Rteil, N., Wynne, A. & Kenny,
R. (2023) Is hot IT a false economy? An analysis of serv-
er and data center energy efficiency as temperatures rise.
IEEE Transactions on Sustainable Computing, pp. 1‒12,
doi: 10.1109/TSUSC.2023.3336801.

7. Ferrer, A.J., Pérez, D.G. & González, R.S. (2016) Multi-
cloud platform-as-a-service model, functionalities and
approaches. Procedia Computer Science 97, pp. 63‒72,
doi: 10.1016/j.procs.2016.08.281.

8. Geng, H. (2021) Data Center Handbook: Plan, Design,
Build, and Operations of a Smart Data Center. Palo Alto:
John Wiley & Sons.

9. Jadhav, M. & Chaudhari, P. (2015) Energy performance
optimization of server room HVAC system. International
Journal of Thermal Technologies 5 (3), pp. 232‒237.

10. Lang, M., Wiesche, M. & Krcmar, H. (2018) Criteria for
selecting cloud service providers: A Delphi study of quali-
ty-of-service attributes. Information & Management 55 (6),
pp. 746‒758, doi: 10.1016/j.im.2018.03.004.

11. Lowe, S.D., Green, J. & Davis, D. (2016) Building a Mod-
ern Data Center: Principles & Strategies of Design. Bluff-
ton, SC, USA: ActualTech Media.

12. Mell, P. & Grance, T. (2011) The NIST Definition of Cloud
Computing. Special Publication (NIST SP), National Insti-
tute of Standards and Technology, Gaithersburg, MD. [On-
line]. Available from: https://doi.org/10.6028/NIST.SP.800-
145 [Accessed: January 30, 2024].

13. Petcu, D. (2013) Multi-Cloud: Expectations and Current
Approaches. New York, ACM Press.

14. Ramamurthy, A., Saurabh, S., Gharote, M. & Lodha, S.
(2020) Selection of cloud service providers for hosting web
applications in a multi-cloud environment. IEEE Interna-
tional Conference on Services Computing (SCC), Beijing,
China, pp. 202‒209, doi: 10.1109/SCC49832.2020.00034.

15. Ruparelia, N. (2015) Cloud Computing. Cambridge, MA:
The MIT Press.

16. Sen, P., Sarddar, D., Sinha, S.K. & Pandit, R. (2019) Web
service scheduling in multi-cloud environment. Internation-
al Journal of Computer Sciences and Engineering 7 (1),
pp. 30‒38.

Cite as: Wirski, R.T. (2024) High availability model of a web service from a system administrator’s per-
spective. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Politechniki Morskiej
w Szczecinie 77 (149), 99–106.

