Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
With more infrastructures being built in high-altitude regions, the impact of low atmospheric pressure on the stability of air bubbles in cementitious materials has aroused extensive attention. However, its influence is still inconclusive since it is difficult to isolate the factor of air pressure and study it. To solve this problem, the study investigated the bubble dynamic evolution in cement paste at standard atmospheric pressure (P = 0.1 MPa) and low atmospheric pressure (LAP = 0.8P, 0.6P, 0.4P, 0.2P) and revealed the mechanism of bubble instability under low atmospheric pressure. We established the buble dynamic evolution equation in cement paste, computed the real-time bubble radius, resultant force, and critical time at different air pressure by MATLAB software. Results show that the maximum resultant force decreases by 50.0–57.7% when air pressure drops from P to 0.2P; both critical time ( t ) and radius increment (ΔR) increase with the reduction of air pressure and the increase of initial radius. It indicates that when at 0.2P, the resultant force which inhibits bubble expansion is reduced, the time required to prevent bubble expansion increases by 94–137%, and ΔR grows 122–140% larger than that at P, and the bubble is more prone to instability and rupture than that at P. The key to improving bubble stability in low atmospheric pressure is to reduce the initial radius of bubbles and increase the strength of the bubble film. This work firstly discovered the impact of low atmospheric pressure on bubble dynamic evolution in cement paste and proposed a new perspective to explore bubble stability at low atmospheric pressure.
Czasopismo
Rocznik
Tom
Strony
art. no. e33, 2024
Opis fizyczny
Bibliogr. 34 poz., fot., rys., wykr.
Twórcy
autor
- Department of Civil Engineering, Central South University, Changsha 410075, China
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Kowloon Tong 100872, Hong Kong, China
autor
- Department of Civil Engineering, Central South University, Changsha 410075, China
autor
- Department of Civil Engineering, Central South University, Changsha 410075, China
autor
- Department of Transportation, Southeast University, Nanjing 210096, China
autor
- Department of Civil Engineering, Central South University, Changsha 410075, China
autor
- Department of Civil Engineering, Central South University, Changsha 410075, China
autor
- Department of Civil Engineering, Central South University, Changsha 410075, China
Bibliografia
- 1. Zeng XH, Lan XL, Zhu HS, et al. A review on bubble stability in fresh concrete: mechanisms and main factors. Materials.2020;13(8):1820. https://doi.org/10.3390/ma13081820.
- 2. Lan XL, Zeng XH, Zhu HS, et al. Experimental investigation on fractal characteristics of pores in air-entrained concrete at low atmospheric pressure. Cem Concr Compos. 2022. https://doi.org/10.1016/j.cemconcomp.2022.104509.
- 3. He R, Yang Z, Gan VJ, Chen H, Cao D. Mechanism of nano-silica to enhance the robustness and durability of concrete in lowair pressure for sustainable civil infrastructures. J Clean Prod.2021;321: 128783. https://doi.org/10.1016/j.jclepro.2021.128783.
- 4. Zeng X, Lan X, Zhu H, Long G, Xie Y. Investigation on air-voidsstructure and compressive strength of concrete at low atmospheric pressure. Cement Concr Compos. 2021;122: 104139. https://doi.org/10.1016/j.cemconcomp.2021.104139.
- 5. Li Xuefeng Fu, Zhi WH. Research on design method of air content of antifreeze air-entrained concrete in plateau area. SilicateBull. 2021;40(08):2600–8. https://doi.org/10.16552/j.cnki.issn1001-1625.2021.08.010.
- 6. Fu X, Shen W, Yao T, Hou W. Physical chemistry (Volume 1). 4thed. Beijing: Higher Education Press; 2005.
- 7. Ke GJ, Tian B, Li XF, et al. Research on and concrete structures destroyed along South Line of Sichuan-Tibet Highway. Ind Constr.2015;45:58–65.
- 8. Liu X. Deterioration mechanism of concrete in plateau environment and the influence of construction quality on it. South west Jiaotong University. (Master’s Thesis). 2017.
- 9. Li XF. Anti-frost Design Method and Preventive Measures for Concrete Structure in the Qinghai-Tibet Plateau. Southeast University. (Doctoral dissertation). 2015.
- 10. Liu Xu, Xin C, Bo T, Lihui Li, Yong Ge. Research progress on the properties of cement concrete under low pressure environment.J Silicate. 2021;49(08):1743–52. https://doi.org/10.14062/j.issn.0454-5648.20200922.
- 11. Shi Y, Yang HQ, Zhou SH, et al. Effect of atmospheric pressure on performance of AEA and air entraining concrete. Adv MaterSci Eng. 2018;10:1–7. https://doi.org/10.1155/2018/6528412.
- 12. He R, Wang T, Chen HX, et al. Impact of Ferlinghetti plateau’sclimate on strength and permeability of concrete China. J Highw Transp. 2020;33(7):29–41. https://doi.org/10.19721/j.cnki.1001-7372.2020.07.003.
- 13. Kun Z, Hengzhou W, Yufu X, et al. Study on the influence of fluid physical properties on cavitation bubble collapse process. J Hefei Univ Technol (Natural Science Edition).2011;34(09):1295–7+1312.
- 14. Lingxin Z, Qin Y, Xueming S. Theoretical and numerical study of bubble collapse in water. Hydrodyn Res Progress A.2012;27(01):68–73.
- 15. Pan LM, Zhang WZ, Chen DQ, et al. Effect of additional inertial force on bubble breakup. Nucl Power Eng. 2011;32(04):37–41(0258-0926(2011)04-0037-05).
- 16. Rosen. Surfactants and interfacial phenomena. 4th ed. Amsterdam: Colloids & Surfaces; 2012.
- 17. Li SY, Wu RH, Wang XY, et al. Effect of environmental pressure on cavitation pulsation characteristics. Acta Photon Sin.2016;45(03):12–6. https:// doi. org/ 10. 3788/ gzxb2 01645 03.0314002.
- 18. Shuai Li, Longquan S, Arman Z. Dynamic behavior of rising bubble. J Phys. 2014;63(18):291–303.
- 19. Oratis AT, Bush JWM, Stone HA, et al. A new wrinkle on liquid sheets: turning the mechanism of viscous bubble collapse upside down. Science. 2020;369(6504):685–8.
- 20. Yang C, Xingrong Z, Yanbo S, et al. Measurement techniques of foam performance and influence factors of foam stability. ChinaMin. 2014;23(S2):230–4.
- 21. Mielenz RC, Wolkodoff VE, Backstrom JS. Origin, evolution,and effects of the air void system in concrete: Part 1: entrainedair in unhardened concrete. ACI J Proc. 1958;55:5–122.
- 22. Shengyong Li, Xiaoyu W, Jiang’an W, et al. Experimental investment of influence of ambient pressure on properties of laser induced cavity bubble collapse sound waves. Infrared Laser Eng. 2015;44(03):879–83.
- 23. Han S, Zhu H. Theoretical and numerical studies on the collapse of single and double-bubble system in water. Int J Numer Methods Fluids. 2020;93(3):527–42.
- 24. Li Y, Wang Z, Wang L. Effect of low pressure on bubble generation and development of air entraining agent solution. Concrete.2019;8:144–8.
- 25. Nan C, Zhihong W, Youquan L, et al. Research on foaming ability and foam stability of foaming agent at the temperature and pressure. Pet Nat Gas Chem. 2017;46(05):65–8.
- 26. Zeng X, Lan X, Zhu H, et al. Using stirring power curves to investigate the air-entrainment and mechanical properties of cement mortar at low air pressure. Constr Build Mater.2023;378:131142. https://doi.org/10.1016/j.conbuildmat.2023.131142.
- 27. Li LH, Chen X, Tian B, et al. Effect of atmospheric pressure on air-entraining performance of air-entraining agent of concrete.J Build Mater. 2021;24(04):866–73. https://doi.org/10.3969/j.issn.1007-9629.2021.04.026.
- 28. Liu X. Effect of low atmospheric pressure on air entraining effectiveness and pore structure of concrete. Harbin: Harbin Institute of Technology. (Master’s dissertation). 2020.
- 29. Zuo S, Yuan Q, Huang T. Microstructural changes of young cement paste due to moisture transfer at low air pressures. CemConcr Res. 2023. https:// doi. org/ 10. 1016/J. CEMCO NRES.2022.107061.
- 30. Shiwen, M. (2013) Study on dynamic behavior of ultrasonic cavitating bubbles. Shaanxi Normal University, (Master thesis).
- 31. Lan X, Zhu H, Zeng X, Long G, Xie Y. How nano-bubble water and nano-silica affect the air-voids characteristics and freeze-thaw resistance of air-entrained cementitious materials at low atmospheric pressure. J Build Eng. 2023;69: 106179. https://doi.org/10.1016/j.jobe.2023.106179.
- 32. Lan X, Zhu H, Zeng X, Long G, Xie Y. Surface tension of cementitious pore solutions at low atmospheric pressure: an experimental exploration. Cem Concr Compos.2023;145:105309.
- 33. Mairong Xu, Chengyun L. The change of radius and velocity of the rising bubble in water. Coll Phys. 2008;11:14–7. https://doi.org/10.16854/j.cnki.1000-0712.2008.11.005.
- 34. Natalie B, Cosima S. A disjoining pressure study of foam films stabilized by mixtures of nonionic and ionic surfactants. Langmuir. 2007;23(10):5315–23.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f71556d-a9e0-4930-a9e4-e65fbf446da1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.