Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
To detect and to diagnose, the localized defect in rolling bearings, a statistical model based on the sequential Wald test is established to generate a “hypothetical” signal which takes the state zero in absence of the defect, and the state one if a peak of resonance caused by the defect in the bearing is present. The autocorrelation of this signal allows one to reveal the periodicity of the defect and, consequently, one can establish the diagnosis by comparing the frequency of the defect with the characteristic frequencies of the bearing. The originality of this work is the use of the Wald test in the signal processing domain. Secondly, this method permits the detection without considering the level of noise and the number of observations, it can be used as a support for the Fast Fourier Transform. Finally, the simulated and experimental signals are used to show the efficiency of this method based on the Wald test.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
123--135
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
autor
- Applied Precision Mechanics Laboratory, Institute of Optics and Precision Mechanics, Ferhat Abbas University of Setif 1, Setif, Algeria
autor
- Applied Precision Mechanics Laboratory, Institute of Optics and Precision Mechanics, Ferhat Abbas University of Setif 1, Setif, Algeria
autor
- Applied Precision Mechanics Laboratory, Institute of Optics and Precision Mechanics, Ferhat Abbas University of Setif 1, Setif, Algeria
autor
- Applied Precision Mechanics Laboratory, Institute of Optics and Precision Mechanics, Ferhat Abbas University of Setif 1, Setif, Algeria
Bibliografia
- 1. Aıvazian S., Enukov I., Mechalkine, 1986, Modeling Element and Primary Data Processing (in French), Mir Moscou
- 2. Barkov A.V., Barkova N.A., Yudin I.A., Rogov S.N., 1999, The Peculiarities of Rolling Element Bearing Vibroacoustic Diagnostics for Transportation Applications, Vibrotek
- 3. Bendjama H., Boucherit M.S., 2016, Wavelets and principal component analysis method for vibration monitoring of rotating machinery, Journal of Theoretical and Applied Mechanics, 54, 2, 659-670
- 4. Berger A., Wald A., 1949, On distinct hypotheses, The Annals of Mathematical Statistics, 20, 1, 104-109
- 5. Bolaers F., Cousinard O., Marconnet P., Rasolofondraibe L., 2004, Advanced detection of rolling bearing spalling from de-noising vibratory signals, Control Engineering Practice, 12, 181-190
- 6. Brie D., 2000, Modelling of the spalled rolling element bearing vibration signal : An overview and some results, Mechanical Systems and Signal Processing, 14, 3, 353-369
- 7. Dong Y., Liao M., Zhang X., Wang F., 2011, Faults diagnosis of rolling element bearings based on modified morphological method, Mechanical Systems and Signal Processing, 25, 1276-1286
- 8. Dron J.P., Bolaers F., Rasolofondraibe L., 2004, Improvement of the sensitivity of the scalar indicators (crest factor, kurtosis) using a de-noising method by spectral subtraction: application to the detection of defects in ball bearings, Journal of Sound and Vibration, 270, 270, 61-73
- 9. Dyer D., Stewart R.M., 1978, Detection of rolling element bearing damage by statistical vibration analysis, Journal of Mechanical Design, 100, 229
- 10. Edwards D.J., Holt G.D., Harris F.C., 1998, Predictive maintenance techniques and their relevance to construction plant, Journal of Quality in Maintenance Engineering, 4, 1, 25-37
- 11. El-Thalji I., Jantunen E., 2015, A summary of fault modelling and predictive health monitoring of rolling element bearings, Mechanical Systems and Signal Processing, 60-61, 252-272
- 12. Fajdiga G., Sraml M., 2009, Fatigue crack initiation and propagation under cyclic contact loading, Engineering Fracture Mechanics, 76 , 1320-1335
- 13. Feng Z., Ma H., Zuo M.J., 2016, Vibration signal models for fault diagnosis of planet bearings, Journal of Sound and Vibration, 370, 372-393
- 14. Glaeser W.A., Shaffer S.J., 1996, Contact fatigue, ASM Handbook, Fatigue and Fracture, 19, 331-336
- 15. Ismail F., Ibrahim A., Martin H.R., 1990, Identification of fatigue cracks from vibration testing, Journal of Sound and Vibration, 140, 2, 305-317
- 16. Jayaswal P., Wadhwani A.K., Mulchandani K.B., 2008, Machine fault signature analysis, International Journal of Rotating Machinery, DOI: 10.1155/2008/583982
- 17. Kar C., Mohanty A.R., 2004, Application of KS test in ball bearing fault diagnosis, Journal of Sound and Vibration, 269, 439-454
- 18. Kopsaftopoulos F.P., Fassois S.D., 2011, Scalar and vector time series methods for vibration based damage diagnosis in a scale aircraft skeleton structure, Journal of Theoretical and Applied Mechanics, 49, 3, 727-756
- 19. Krejcar O., Frischer R., 2011, Non destructive defect detection by spectral density analysis, Sensors, 11, 2334-2346
- 20. Lenort F., 1995, A Fast Discrete Fourier Transform with unequally-spaced frequencies, Journal of Theoretical and Applied Mechanics, 33, 1, 73-81
- 21. Liu T.I., Singonahalli J.H., Iyer N.R., 1996, Detection of roller bearing defects using expert system and fuzzy logic, Mechanical Systems and Signal Processing, 10, 5, 595-614
- 22. Ma J., Li J.C., 1995, Detection of localised defects in rolling element bearing via composite hypothesis test, Mechanical Systems and Signal Processing, 9, 1, 63-75
- 23. Mann Jr L., Saxena A., Knapp G.M., 1995, Statistical-based or condition-based preventive maintenance, Journal of Quality in Maintenance Engineering, 1, 46-59
- 24. Mikhlin Y., Mytrokhin S., 2008, Non linear vibration modes of the tracked raod vehicle, Journal of Theoretical and Applied Mechanics, 46, 3, 581-596
- 25. Niu L., Cao H., He Z., Li Y., 2015, A systematic study of ball passing frequencies based on dynamic modeling of rolling ball bearings with localized surface defects, Journal of Sound and Vibration, 357, 207-232
- 26. Ou L., Yu D., Yang H., 2016, A new rolling bearing fault diagnosis method based on GFT impulse component extraction, Mechanical Systems and Signal Processing, 81, 162-182
- 27. Pachaud C., Salvetat R., Fray C., 1997, Crest factor and kurtosis contributions to identify defects inducing periodical impulsive forces, Mechanical Systems and Signal Processing, 11, 6, 903-916
- 28. Paulson E., 1947, A note on the efficiency of the Wald sequential test, The Annals of Mathematical Statistics, 18, 3, 447-450
- 29. Rai A., Upadhyay S.H., 2016, A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings, Tribiology International, 96, 289-306
- 30. Renwick J.T., Babson P.E., 1985, 1985, Vibration analysis-a proven technique as a predictive maintenance tool, IEEE Transactions on Industry Applications, IA-21, 2
- 31. Rizos P.F., Aspragathos N., Dimarogonas A.D., 1990, Identification of crack location and magnitude in a cantilever beam from the vibration modes, Journal of Sound and Vibration, 138, 3, 381-388
- 32. Samanta B., Al-Balushi K.R., 2003, Artificial neural network based fault diagnosis for rolling element bearings using time-domain features, Mechanical Systems and Signal Processing, 17, 2, 317-328
- 33. Schneeweiss H., 2005, Abraham Wald, Department of Statistics, University of Munich, Collaborative Research Center, 386, 439
- 34. Sheen Y.-T., 2004, A complex filter for vibration signal demodulation in bearing defect diagnosis, Journal of Sound and Vibration, 276, 105-119
- 35. Sheen Y.-T., 2008, An envelope detection method based on the first-vibration-mode of bearing vibration, Measurement, 41, 797-809
- 36. Sobel M., Wald A., 1949, A sequential decision procedure for choosing one of three hypotheses concerning the unknown mean of a normal distribution, The Annals of Mathematical Statistics, 20, 4, 502-522
- 37. Stack J.R., Harley R.G., Habetler T.G., 2004, An amplitude modulation detector for fault diagnosis in rolling element bearings, IEEE Transactions on Industrial Electronics, 51, 5, 1097-1102
- 38. Tandon N., Choudhury A., 1999, A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings, Tribology International, 32, 8, 469-480
- 39. Tauqir A., Salam I., ul Haq A., Khan A.Q., 2000, Causes of fatigue failure in the main bearing of an aero-engine, Engineering Failure Analysis, 7, 127-144
- 40. Van M., Franciosa P., Ceglarek D., 2016, Rolling element bearing fault diagnosis using integrated nonlocal means de-noising with modified morphology filter operators, Mathematical Problems in Engineering, DOI: 10.1155/2016/9657285
- 41. Wald A., 1943, On the efficient design of statistical investigations, The Annals of Mathematical Statistics, 14, 2, 134-140
- 42. Wald A., 1945, Sequential tests of statistical hypotheses, The Annals of Mathematical Statistics, 16, 2, 117-186
- 43. Wald A., 1947, Sequential Analysis, John Wiley and Sons, New York
- 44. Wald A., 1949, Statistical decision functions, The Annals of Mathematical Statistics, 20, 2, 165-205
- 45. Wald A., Wolfowitz J., 1943, An exact test for randomness in the non-parametric case based on serial correlation, The Annals of Mathematical Statistics, 14, 4, 378-388
- 46. Wald A., Wolfowitz J., 1948, Optimum character of the sequential probability ratio test, The Annals of Mathematical Statistics, 19, 3, 326-339
- 47. Wang H., Li R., Tang G., Yuan H., Zhao Q., Cao X., 2014, A compound fault diagnosis for rolling bearings method based on blind source separation and ensemble empirical mode decomposition, Journals Plos, 9, 10
- 48. Weiss L., 1956, On the uniqueness of Wald sequential tests, The Annals of Mathematical Statistics, 27, 4, 1178-1181
- 49. Wolfowitz J., 1949, On Wald’s proof of the consistency of the maximum likelihood estimate, The Annals of Mathematical Statistics, 20, 4, 601-602
- 50. Yang H., Mathew J., Ma L., 2005, Fault diagnosis of rolling element bearings using basis pursuit, Mechanical Systems and Signal Processing, 19, 341-356
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f6e89fa-39b5-4548-9cb5-f7c86715e046