Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let S be an inverse semigroup with the set of idempotents E . In this article, we find necessary and sufficient conditions for the weighted semigroup algebra l1(S,ω) to be module approximately amenable (contractible) and module character amenable (as l1(E) -module).
Wydawca
Czasopismo
Rocznik
Tom
Strony
217--225
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
- Department of Mathematics, Garmsar Branch, Islamic Azad University, Garmsar, Iran
autor
- Esfarayen University of Technology, Esfarayen, North Khorasan, Iran
Bibliografia
- [1] B. E. Johnson, Cohomology in Banach Algebras, vol. 127, Memoirs American Mathematical Society, Providence, 1972.
- [2] F. Ghahramani and R. J. Loy, Generalized notions of amenability, J. Funct. Anal. 208 (2004), 229–260, DOI: https://doi.org/10.1016/S0022-1236(03)00214-3.
- [3] M. Amini, Module amenability for semigroup algebras, Semigroup Forum 69 (2004), 243–254, DOI: https://doi.org/10.1007/s00233-004-0107-3.
- [4] H. Pourmahmood-Aghababa and A. Bodaghi, Module approximate amenability of Banach algebras, Bull. Iran. Math. Soc. 39 (2013), 1137–1158.
- [5] J. M. Howie, Fundamental of semigroup theory, London Mathematical Society Monographs, Vol. 12, Clarendon Press, Oxford, 1995.
- [6] E. Kaniuth, A. T-M. Lau, and J. Pym, On ϕ-amenability of Banach algebras, Math. Proc. Camb. Soc. 144 (2008), 85–96, DOI: https://doi.org/10.1017/S0305004107000874.
- [7] M. S. Monfared, Character amenability of Banach algebras, Math. Proc. Camb. Soc. 144 (2008), 697–706, DOI: https://doi.org/10.1017/S0305004108001126.
- [8] A. Bodaghi and M. Amini, Module character amenability of Banach algebras, Arch. Math. (Basel) 99 (2012), 353–365, DOI: https://doi.org/10.1007/s00013-012-0430-y.
- [9] A. Bodaghi, H. Ebrahimi, and M. Lashkarizaheh Bami, Generalized notions of module character amenability, Filomat 31 (2017), no. 6, 1639–1654, DOI: https://doi.org/10.2298/FIL1706639B.
- [10] H. G. Dales and A. T.-M. Lau, The second duals of Beurling algebras, Memoirs Amer. Math. Soc. vol. 117, American Mathematical Society, Providence, R.I., 2005.
- [11] F. Ghahramani, R. J. Loy, and Y. Zhang, Generalized notions of amenability, II, J. Funct. Anal. 254 (2008), 1776–1810, DOI: https://doi.org/10.1016/j.jfa.2007.12.011.
- [12] O. T. Mewomo and S. M. Maepa, On character amenability of Beurling and second dual algebras, Acta Univ. Apulensis 38 (2014), 67–80.
- [13] O. T. Mewomo, Note on character amenability in Banach algebras, Math. Reports 19 (2017), no. 69, 293–312.
- [14] G. Asgari, A. Bodaghi, and D. Ebrahimi Bagha, Module amenability and module arens regularity of weighted semigroup algebras, Commun. Korean Math. Soc. 34 (2019), no. 3, 743–755, DOI: https://doi.org/10.4134/CKMS.c170320.
- [15] P. Šemrl, Additive derivations of some operator algebras, Illinois J. Math. 35 (1991), 234–240, DOI: https://doi.org/10.1215/ijm/1255987893.
- [16] M. Amini, A. Bodaghi, and D. Ebrahimi Bagha, Module amenability of the second dual and module topological center of semigroup algebras, Semigroup Forum 80 (2010), 302–312, DOI: https://doi.org/10.1007/s00233-010-9211-8.
- [17] H. Pourmahmood-Aghababa, (Super) Module amenability, module topological center and semigroup algebras, Semigroup Forum 81 (2010), 344–356, DOI: https://doi.org/10.1007/s00233-010-9231-4.
- [18] W. D. Munn, A class of irreducible matrix representations of an arbitrary inverse semigroup, Proc. Glasgow Math. Assoc. 5 (1961), 41–48, DOI: https://doi.org/10.1017/S2040618500034286.
- [19] H. Pourmahmood-Aghababa, A note on two equivalence relations on inverse semigroups, Semigroup Forum 84 (2012), 200–202, DOI: https://doi.org/10.1007/s00233-011-9365-z.
- [20] J. Duncan and I. Namioka, Amenability of inverse semigroups and their semigroup algebras, Proc. Roy. Soc. Edinburgh 80A (1988), no. 3–4, 309–321, DOI: https://doi.org/10.1017/S0308210500010313.
- [21] J. Dziubanski, J. Ludwig, and C. Molitor-Braun, Functional calculus in weighted group algebras, Rev. Mat. Complut. 17 (2004), no. 2, 321–357, DOI: https://doi.org/10.5209/rev_REMA.2004.v17.n2.16725.
- [22] J. Duncan and L. T. Paterson, Amenability for discrete convolution semigroup algebras, Math. Scand. 66 (1990), 141–146, DOI: https://www.jstor.org/stable/24492029.
- [23] F. Ghahramani, E. Samei, and Y. Zhang, Generalized amenability properties of the Beurling algebras, J. Aust. Math. Soc. 89 (2010), 359–376, DOI: https://doi.org/10.1017/S1446788711001133.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f6bf44c-b829-4947-b94f-089d190e18b5