PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reflection and transmission in non-local couple stress micropolar thermoelastic media

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We have studied the problem of homogenous, isotropic non-local couple stress micropolar thermoelastic solid in the absence of body forces, couple density and heat resources. The reflection and transmission of waves at the interface of two distinct media have been investigated. It is observed that amplitude ratios of various reflected and transmitted waves are functions of wave number of incident waves and are affected by the non-local parameter of thermoelastic solid.
Rocznik
Strony
53--76
Opis fizyczny
Bibliogr. 29 poz., tab., wykr.
Twórcy
autor
  • Department of Mathematics, Baba Mastnath University, Rohtak, Haryana, INDIA
  • Department of Mathematics, Hindu Girls College, Sonepat, Haryana, INDIA
  • Department of Mathematics, Baba Mastnath University, Rohtak, Haryana, INDIA
  • Department of Mathematics, Hindu Girls College, Sonepat, Haryana, INDIA
  • Department of Mathematics, Hindu College, Sonepat, Haryana, INDIA
  • Department of Mathematics, Hindu College, Sonepat, Haryana, INDIA
Bibliografia
  • [1] Eringen A.C. (1966): Linear theory of micropolar elasticity.– Mathematics and Mechanics, vol.15, No.6, pp.909-923.
  • [2] Eringen A.C. (1972): Linear theory of non-local elasticity and dispersion of plane waves.– Int. J. Eng Sci., vol.10, pp.425-435.
  • [3] Eringen A.C. and Edelen D.G.B. (1972): On nonlocal elasticity.– Int. J. Eng. Sci., vol.10, No.3, pp.233-248.
  • [4] Chandrasekharaiah D.S. (1983): Surface waves in micropolar thermoelasticity.– Proc. Indian Acad. Sci.(Math. Sci.), vol.92, No.6, pp.109-120.
  • [5] Eringen A.C. (1990): Theory of thermo-microstretch elastic solids.– Int. J. Engng. Sci., vol.28, No.12, pp.1291-1301.
  • [6] Inan E. and Eringen A.C.(1991): Nonlocal theory of wave propagation in thermoelastic plates.– Int. J. Engng. Sci., vol.29, No.7, pp.831-843.
  • [7] Eringen A.C. (2002): Non-Local Continuum Field Theories.– New York, Springer-Verlag.
  • [8] Kumar R. and Deswal S. (2002): Surface wave propagation in a micropolar thermoelastic medium without energy dissipation.– Journal of Sound and Vibrations, vol.256, pp.173-178.
  • [9] Kumar R. and Chawla V. (2012): Reflection and transmission of plane waves at an interface between elastic and micropolar diffusion media.– Canadian Applied Mathematics Quarterly, vol.20, pp.375.
  • [10] Kumar R. and Gupta V. (2013): Reflection and transmission of plane waves at the interface of an elastic half-space and a fraction order thermoelastic half-space.– Archieve of Applied Mechanics, vol.83, pp.1109-1128.
  • [11] Kumar M., Kaur M. and Rajvanshi S.C. (2014): Reflection and transmission between two micropolar thermoelastic half-spaces with three-phase-lag model.– Journal of Engineering Physics and Thermodynamics, vol.87, No.2, pp.295-307.
  • [12] Kumar R. (2015): Wave propagation in microstretch thermoelastic diffusion solid.– An. St. Univ. Ovidius Constanta, vol.23, No.1, pp.127-169.
  • [13] Kumar R,. Kumar K. and Nautiyal R.C. (2015): Reflection at the free surface of couple stress generalised thermoelastic solid half space.– Open Journal of Heat, Mass and Momentum Transfer, vol.3, No.1, pp.14-28.
  • [14] Khurana A. and Tomar S.K. (2016): Wave propagation in nonlocal microstretch solid.– Applied Mathematical Modelling, vol.40, pp.5858-5875.
  • [15] Kumar R. and Kumar K. (2016): Reflection and transmission at the boundary surface of modified couple stress thermoelastic media.– Int. J. of Applied Mechanics and Engineering, vol.21, No.1, pp.61-81.
  • [16] Khurana A. and Tomar S.K. (2017): Rayleigh-type waves in nonlocal micropolar solid half-space.– Ultrasonics, vol.73, pp.162-168.
  • [17] Singh D., Kaur G. and Tomar S.K. (2017): Waves in nonlocal elastic solid with voids.– Journal of Elasticity, vol.128, pp.85-114.
  • [18] Khurana A. and Tomar S.K. (2018): Waves at interface of dissimilar nonlocal micropolar elastic half-spaces.– Mechanics of Advanced Materials and Structures, vol.26, No.3, pp.1-9.
  • [19] Kaur G., Singh D. and Tomar S.K. (2018): Rayleigh-type wave in a nonlocal elastic solid with voids.– European Journal of Mechanics / A Solids, vol.71, pp.134-150.
  • [20] Kaur G., Singh D. and Tomar S.K. (2019): Love waves in a nonlocal elastic media with voids.– Journal of Vibration and Control, vol.25, No.8, pp.1-14.
  • [21] Sarkar N. and Tomar S.K. (2019): Plane waves in nonlocal thermoelastic solid with voids.– Journal of Thermal Stress, vol.42, No.5, pp.1-27.
  • [22] Sarkar N., De S., and Sarkar N. (2019): Waves in nonlocal thermoelastic solids of type II.– Journal of Thermal Stress, vol.42, No.9, pp.1153-1170.
  • [23] Singh B., Yadav A.K. and Gupta D. (2019): Reflection of plane waves from a micropolar thermoelastic solid half-space with impedance boundary conditions.– Journal of Ocean Engineering and Science, vol.4, pp.122-131.
  • [24] Das N., De S. and Sarkar N. (2020): Reflection of plane waves in generalised thermoelasticity of type III with nonlocal effect.– Mathematical Methods in the Applied Sciences, vol.43, No.3, pp.1313-1336.
  • [25] Biswas S. (2020): Rayleigh waves in a nonlocal thermoelastic layer lying over a nonlocal thermoelastic half space.– Acta Mechanica, vol.231, pp.4129-4144.
  • [26] Sarkar N., Abo-Dohab S.M. and Mondal S. (2020): Reflection of magneto-thermoelastic waves at a solid half-space under modified Green-Lindsay model with two temperatures.– Journal of Thermal Stress, vol.43, No.9, pp.1083-1099.
  • [27] Pramanik A.S. and Biswas S. (2020): Surface waves in non-local thermoelastic medium with state space approach.– Journal of Thermal Stress, vol.43, No.6, pp.1-20.
  • [28] Poonam, Sahrawat R.K. and Kumar K. (2021): Plane wave propagation and fundamental solution in non-local couple stress micropolar thermoelastic solid medium with voids.– Waves in Random and Complex Media, vol.31, pp.1-37.
  • [29] Kaur I. and Singh K. (2021): Plane wave in non-local semiconducting rotating media with Hall effect and three phase lag fractional order heat transfer.– International Journal of Mechanical and Materials Engineering, vol.14, pp.1-16.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f6b3f97-58e2-4e14-99c3-485ab104d77b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.