Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Demand for wireless and mobile data is increasing along with development of virtual reality (VR), augmented reality (AR), mixed reality (MR), and extended reality (ER) applications. In order to handle ultra-high data exchange rates while offering low latency levels, fifth generation (5G) networks have been proposed. Energy efficiency is one of the key objectives of 5G networks. The notion is defined as the ratio of throughput and total power consumption, and is measured using the number of transmission bits per Joule. In this paper, we review state-of-the-art techniques ensuring good energy efficiency in 5G wireless networks. We cover the base-station on/off technique, simultaneous wireless information and power transfer, small cells, coexistence of long term evolution (LTE) and 5G, signal processing algorithms, and the latest machine learning techniques. Finally, a comparison of a few recent research papers focusing on energy-efficient hybrid beamforming designs in massive multiple-input multiple-output (MIMO) systems is presented. Results show that machine learningbased designs may replace best performing conventional techniques thanks to a reduced complexity machine learning encoder.
Słowa kluczowe
Rocznik
Tom
Strony
1--9
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
- Faculty of Electrical Engineering, Higher Colleges of Technology, RUWC/MZWC, Abu Dhabi, United Arab Emirates
autor
- Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
autor
- Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
autor
- Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
autor
- Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
Bibliografia
- [1] „What Will 5G Mean for the Environment?", The Henry M. Jackson School of International Studies", University of Washington [Online]. Available: https://jsis.washington.edu/news/what-will-5g-mean-for-the-environment/
- [2] „Power a Greener 5G Era with Huawei 5G Power", Mobile World Live" [Online]. Available: https://www.mobileworldlive.com/huawei-updates/power-a-greener-5g-era-with-huawei-5g-power/
- [3] M. Usama and M. Erol-Kantarci, „A survey on recent trends and open issues in energy efficiency of 5G", Sensors (Basel), vol. 19, no. 14, 2019 (DOI: 10.3390/s19143126).
- [4] A. Bohli and R. Bouallegue, „How to meet increased capacities by future green 5G networks: a survey", IEEE Access, vol. 7, pp. 42220-42237, 2019 (DOI: 10.1109/ACCESS.2019.2907284).
- [5] Q. Zhao and M. Gerla, „Energy efficiency enhancement in 5G mobile wireless networks", in Proc. 2019 IEEE 20th IEEE Int. Symp. On a World of Wirel., Mob. and Multim. Netw. WoWMoM 2019, Washington, DC, USA, 2019 (DOI: 10.1109/WoWMoM.2019.8792998).
- [6] C. Bouras and G. Diles, „Energy efficiency in sleep mode for 5G femtocells", in Proc. 2017 Wireless Days WD 2017, Porto, Portugal, 2017, no. 3, pp. 143-145 (DOI: 10.1109/WD.2017.7918130).
- [7] F. Mukhlif, K. A. B. Nooridin, Y. A. Al-Gumaei, and A. S. Al-Rassas, „Energy harvesting for efficient 5G networks", in Proc. 2018 Int. Conf. on Smart Comput. and Electron. Enterp. ICSCEE 2018, Shah Alam, Malaysia, 2018 (DOI: 10.1109/ICSCEE.2018.8538376).
- [8] A. Li and C. Masouros, „Energy efficient MIMO SWIPT by hybryd analog-digital beamforming", in Proc. 2017 IEEE 18th Worksh. On Sig. Process. Adv. in Wirel. Commun. SPAWC 2017, Sapporo, Japan, 2017 (DOI: 10.1109/SPAWC.2017.8227793).
- [9] I. Alqerm and B. Shihada, „Energy efficient traffic offloading in multi-tier heterogeneous 5G networks using intuitive online reinforcement learning", IEEE Trans. on Green Commun. and Network., vol. 3, no. 3, pp. 691-702, 2019 (DOI: 10.1109/TGCN.2019.2916900).
- [10] S. Rizvi et al., „An investigation of energy efficiency in 5G wireless networks", in Proc. 2017 Int. Conf. on Circ., Syst. and Simul. ICCSS 2017, London, UK, 2017, pp. 142-145 (DOI: 10.1109/CIRSYSSIM.2017.8023199).
- [11] V. Poirot, M. Ericson, M. Nordberg, and K. Andersson, „Energy efficient multi-connectivity algorithms for ultra-dense 5G networks", Wirel. Netw., vol. 26, no. 3, pp. 2207-2222, 2020 (DOI: 10.1007/s11276-019-02056-w).
- [12] H. Kour and R. K. Jha, „Power optimization using spectrum sparing for next generation cellular networks", in Proc. 2019 11th Int. Conf. on Commun. Syst. and Netw. COMSNETS 2019, Bengaluru, India, 2019, vol. 2061, pp. 562-564 (DOI: 10.1109/COMSNETS.2019.8711197).
- [13] S. Noh et al., „Training sequence design for feedback assisted hybryd beamforming in massive MIMO systems", IEEE Trans. on Commun., vol. 64, no. 1, pp. 187-200, 2016 (DOI: 10.1109/TCOMM.2015.2498184).
- [14] L. Yang, Y. Zeng, and R. Zhang, „Wireless power transfer with hybrid beamforming: How many RF chains do we need?", IEEE Trans. on Wirel. Commun., vol. 17, no. 10, pp. 6972-6984, 2018 (DOI: 10.1109/TWC.2018.2865313).
- [15] K. Roth, H. Pirzadeh, A. Lee Swindlehurst, and J. A. Nossek, „A comparison of hybrid beamforming and digital beamforming with low-resolution ADCs for multiple users and imperfect CSI", IEEE J. on Selec. Topics in Sig. Process., vol. 12, no. 3, pp. 484-498, 2018 (DOI: 10.1109/JSTSP.2018.2813973).
- [16] K. Roth and J. A. Nossek, „Achievable rate and energy efficiency of hybrid and digital beamforming receivers with low resolution ADC", IEEE J. on Selec. Areas in Commun., vol. 35, no. 9, pp. 2056-2068, 2017 (DOI: 10.1109/JSAC.2017.2720398).
- [17] S. Han, C. L. Io, C. Rowell, Z. Xu, S. Wang, and Z. Pan, „Large scale antenna system with hybrid digital and analog beamforming structure", in Proc. IEEE Int. Conf. on Commun. Worksh. ICC 2014, Sydney, NSW, Australia, 2014, pp. 842-847 (DOI: 10.1109/ICCW.2014.6881305).
- [18] P. Zhu, H. Mao, J. Li, and X. You, „Energy efficient joint energy cooperation and power allocation in multiuser distributed antenna systems with hybrid energy supply", IET Commun., vol. 13, no. 2, pp. 153-161, 2019 (DOI: 10.1049/iet-com.2018.5181).
- [19] X. Ge, Y. Sun, H. Gharavi, and J. Thompson, „Joint optimization of computation and communication power in multi-user Massie MIMO systems", IEEE Trans. on Wirel. Commun., vol. 17, no. 6, pp. 4051-4063, 2018 (DOI: 10.1109/TWC.2018.2819653).
- [20] H. Shokri-Ghadikolaei, C. Fischione, G. Fodor, P. Popovski, and M. Zorzi, „Millimeter wave cellular networks: A MAC layer perspective", IEEE Trans. on Communi., vol. 63, no. 10, pp. 3437-3458, 2015 (DOI: 10.1109/TCOMM.2015.2456093).
- [21] S. He, C. Qi, Y. Wu, and Y. Huang, „Energy-efficient transceiver design for hybrid sub-array architecture MIMO systems", IEEE Access, vol. 4, pp. 9895-9905, 2016 (DOI: 10.1109/ACCESS.2017.2649539).
- [22] I. Al Qerm and B. Shihada, „Enhanced machine learning scheme for energy efficient resource allocation in 5G heterogeneous cloud radio access networks", in Proc. IEEE Int. Symp. on Pers., Indoor and Mob. Radio Commun. PIMRC 2018, Montreal, QC, Canada, 2018, vol. 2017-October (DOI: 10.1109/PIMRC.2017.8292227).
- [23] H. Park and Y. Lim, „Reinforcement learning for energy optimization with 5g communications in vehicular social networks", Sensors (Basel), vol. 20, no. 8, 2020 (DOI: 10.3390/s20082361).
- [24] T. Ding, Y. Zhao, L. Li, D. Hu, and L. Zhang, „Hybrid precoding for beamspace MIMO systems with sub-connected switches: a machine learning approach", IEEE Access, vol. 7, pp. 143273-143281, 2019 (DOI: 10.1109/ACCESS.2019.2944061).
- [25] I. Ahmed and H. Khammari, „Joint machine learning based resource allocation and hybrid beamforming design for massive MIMO systems", in Proc. 2018 IEEE Globecom Worksh. GC Wkshps 2018, Abu Dhabi, United Arab Emirates, 2019 (DOI: 10.1109/GLOCOMW.2018.8644454).
- [26] R. Falkenberg, B. Sliwa, N. Piatkowski, and C. Wietfeld, „Machine learning based uplink transmission power prediction for LTE and upcoming 5G networks using passive downlink indicators", in Proc. 2018 IEEE 88th Veh. Technol. Conf. VTC-Fall 2019, Chicago, IL, USA, 2019, vol. 2018-August (DOI: 10.1109/VTCFall.2018.8690629).
- [27] S. Ali, N. Rajatheva, and W. Saad, „Fast uplink grant for machine type communications: challenges and opportunities", IEEE Commun. Mag., vol. 57, no. 3, pp. 97-103, 2019 (DOI: 10.1109/MCOM.2019.1800475).
- [28] S. Essassi, S. Cherif, and M. Siala, „RB allocation based on genetic algorithm and coordination over the £2 interface in the LTE uplink", in Proc. 2013 IEEE 24th Int. Symp. on Pers., Indoor and Mob. Radio Commun. PIMRC 2013, London, UK, 2013, pp. 2424-2428 (DOI: 10.1109/PIMRC.2013.6666552).
- [29] U. Challita, L. Dong, and W. Saad, „Proactive resource management for LTE in unlicensed spectrum: A deep learning perspective", IEEE Trans. on Wirel. Commun., vol. 17, no. 7, pp. 4674-4689, 2018 (DOI: 10.1109/TWC.2018.2829773).
- [30] P. Khuntia and R. Hazra, „An actor-critic reinforcement learning for device-to-device communication underlaying cellular network", In Proc. 2018 IEEE Region 10 Ann. Int. Conf. TENCON 2019, Jeju, South Korea, 2019, vol. 2018-October, pp. 50-55 (DOI: 10.1109/TENCON.2018.8650160).
- [31] L. Huang, X. Feng, C. Zhang, L. Qian, and Y. Wu, „Deep reinforcement learning-based joint task offloading and bandwidth allocation for multi-user mobile edge computing", Digit. Commun. and Netw., vol. 5, no. 1, pp. 10-17, 2019 (DOI: 10.1016/j.dcan.2018.10.003).
- [32] M. Chen, W. Saad, and C. Yin, „Virtual reality over wireless networks: Quality-of-service model and learning-based resource management", IEEE Trans. on Commun., vol. 66, no. 11, pp. 5621-5635, 2018 (DOI: 10.1109/TCO).
- [33] H. Ye and G. Y. Li, „Deep reinforcement learning for resource allocation in V2V communications", in Proc. IEEE Int. Conf. on Commun. ICC 2018, Kansas City, MO, USA, 2018, vol. 2018-May (DOI: 10.1109/ICC.2018.8422586).
- [34] S. Barrachina-Munoz, T. Adame, A. Bel, and B. Bellalta, „Towards energy efficient LPWANs through learning-based multi-hop routing", in Proc. IEEE 5th World Forum on Internet of Things WF-IoT 2019, Limerick, Ireland, 2019, pp. 644-649 (DOI: 10.1109/WF-IoT.2019.8767193).
- [35] I. Ahmed et al., „A survey on hybrid beamforming techniques In 5G: Architecture and system model perspectives", IEEE Commun. Surv. and Tutor., vol. 20, no. 4, pp. 3060-3097, 2018 (DOI: 10.1109/COMST.2018.2843719).
- [36] F. Sohrabi and W. Yu, „Hybrid digital and analog beamforming design for large-scale MIMO systems", in Proc. IEEE Int. Conf. on Acoust., Speech and Sig. Process. CASSP 2015, Brisbane, QLD, Australia, 2015, pp. 2929-2933 (DOI: 10.1109/ICASSP.2015.7178507).
- [37] O. E. Ayach, R. W. Heath, S. Abu-Surra, S. Rajagopal, and Z. Pi, „Low complexity precoding for large millimeter wave MIMO systems", in Proc. IEEE Int. Conf. on Commun. ICC 2012, Ottawa, ON, Canada, 2012, pp. 3724-3729 (DOI: 10.1109/ICC.2012.6363634).
- [38] H. W. Kuhn, „The Hungarian method for the assignment problem", Naval Research Logistics Quarterly, vol. 2, no. 1-2, pp. 83-97, 1955. [Online]. Available: https://onlinelibrary.wiley.com/doi/full/10.1002/nav.3800020109 (DOI: 10.1002/nav.3800020109).
- [39] Y. Han, S. Jin, J. Zhang, J. Zhang, and K. K. Wong, „DFT-based hybrid beamforming multiuser systems: Rate analysis and beam selection", IEEE J. of Selec. Topics in Sig. Process., vol. 12, no. 3, pp. 514-528, 2018 (DOI: 10.1109/JSTSP.2018.2821104).
- [40] R. Pal, A. K. Chaitanya, and K. V. Srinivas, „Low-complexity beam selection algorithms for millimeter wave beamspace MIMO systems", IEEE Commun. Lett., vol. 23, no. 4, pp. 768-771, 2019 (DOI: 10.1109/LCOMM.2019.2902147).
- [41] Y. Liu and J. Wang, „Low-complexity OFDM-based hybrid precoding for multiuser massive MIMO systems", IEEE Wirel. Commun. Lett., vol. 9, no. 8, pp. 263-266, 2020 (DOI: 10.1109/LWC.2019.2929518).
- [42] F. Khalid, „Hybrid beamforming for millimeter wave massive multiuser MIMO systems using regularized channel diagonalization", IEEE Wirel. Commun. Lett., vol. 8, no. 3, pp. 705-708, 2019 (DOI: 10.1109/LWC.2018.2886882).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f6a5f84-b5db-495f-966a-f4f6d67534f3