Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The product graph B * F of graphs B and F is an interesting model in the design of large reliable networks. Fault tolerance and transmission delay of networks are important concepts in network design. The notions are strongly related to connectivity and diameter of a graph, and have been studied by many authors. Wide diameter of a graph combines studying connectivity with the diameter of a graph. Diameter with width k of a graph G, k-diameter, is defined as the minimum integer d for which there exist at least k internally disjoint paths of length at most d between any two distinct vertices in G. Denote by DWc the c-diameter of G and κ(G) the connectivity of G. We prove that DWa+b(B * F) £ ra(F) + DWb (B) + 1 for a ≤ κ(F) and b ≤ κ(B). The Rabin number rc(G) is the minimum integer d such that there are c internally disjoint paths of length at most d from any vertex v to any set of c vertices {v1, v2, ... , vc}.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
153--160
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
- FCE, University of Maribor, Smetanova 17, Maribor 2000, Slovenia
autor
- FME, University of Ljubljana, Aškerčeva 6, Ljubljana 1000, Slovenia
Bibliografia
- [1] I. Banic, J. Zerovnik: Fault-diameter of Cartesian graph bundles, Information Processing Letters, 100, 2006, 47-51.
- [2] I. Banic, R. Erves, J. Zerovnik: The Edge fault-diameter of Cartesian graph bundles, European Journal of Combinatorics 30, 2009, 1054-1061.
- [3] I. Banic, R. Erves, J. Zerovnik: Edge, vertex and mixed fault diameters, Advances in Applied Mathematics 43, 2009, 231-238.
- [4] I. Banic, J. Zerovnik: Wide-diameter of Cartesian graph bundles, Discrete Mathematics 310, 2010, 16971701.
- [5] J.-C. Bermond, C. Delorme, G. Farh: Large graphs with given degree and diameter II, Journal of Combinatorial Theory B 36, 1984, 32-48.
- [6] G. Chatrand, F. Harary: Planar permutation graphs, Annales de l’Institut Poincare Sec. B 3 , 1967, 433-438.
- [7] P. Cull, S. M. Larson: On generalized twisted cubes, Information Processing Letters, 55 , 1995, 53-55.
- [8] K. Efe: A variation on the hypercube with lower diameter, IEEE Transactions on Computers 40 , 1991, 1312-1316.
- [9] S-Y. Hsieh and Y-S. Chen: Strongly Diagnosable Product Networks Under the Comparison Diagnosis Model, IEEE Transactions on Computers 57, 2008, 721-732.
- [10] S-Y. Hsieh, T-Y. Chuang: The Strong Diagnosability of Regular Networks and Product Networks under the PMC Model, IEEE Transactions on Parallel and Distributed Systems 20 , 2009, 367-378.
- [11] W. Imrich, S. KlavZar: Products Graphs, Structure and Recognition, Wiley, New York, 2000.
- [12] T. Kojima and K. Ando: Wide-diameter and minimum length of fan, Theoretical Computer Science 235, 2000, 257-266.
- [13] T. Kojima: Wide diameter and minimum length disjoint Menger path systems, Networks 46,2005, 136-141.
- [14] T. Kojima: On strong Rabin numbers of graphs and digraphs, Advances and Applications of Discrete Mathematics 3, 2009, 85-108.
- [15] S. C. Liawd, G. J. Chang, Generalized Diameters and Rabin Numbers of Networks, Journal of Combinatorial Optimization 2, 1999, 371-384.
- [16] T. Pisanski, J. Shawe-Taylor, J. Vrabec: Edge-colorability of graph bundles, Journal of Combinatorial Theory B 35, 1983, 12-19.
- [17] I. StojmenoviC: Multiplicative circulant networks: Topological properties and communication algorithms, Discrete Applied Mathematics 77, 1997, 281-305.
- [18] M. Xu, J.-M. Xu, X.-M. Hou: Fault diameter of Cartesian product graphs, Information Processing Letters 93, 2005, 245-248.
- [19] J.-M. Xu, C. Yang: Fault diameter of product graphs, Information Processing Letters 102, 2007, 226-228.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f5f28bd-1104-4a6e-994c-9629f20b45d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.