PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monitoring of helicopter swash-plate wear using the FAM-C diagnosis method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Helicopter rotor dynamics (blade vibrations, ground resonance, influence of forward speed, etc.) play an important role in the wear and tear of the transmission system and power unit. Particularly fast wear of these components is to be expected in military helicopters in combat conditions, where the flight dynamics parameters are often exceeded. The FAM-C method developed at the Air Force Institute of Technology in Poland has been used to assess and monitor this wear. This method can be used to monitor damage to helicopter propulsion and transmission, where other "classical" methods are less effective due to a very complicated system of forces, variable as to the direction of amplitude and frequency, causing vibrations in closely spaced kinematic pairs. For this reason, vibroacoustic and thermal effects are created around these kinematic pairs, which interfere with each other. In a helicopter, the propulsion unit, including the power transmission unit, is at the same time the carrier unit. This has forced designers to construct a propulsion system with a much greater number of joints and bearing supports. This article presents the possibilities of the FAM-C method for monitoring of swash-plate main bearing wear. The swash-plates are not formally part of the helicopter's propulsion unit but are used to direct the thrust vector of the blades i.e., they direct the helicopter's power vector. Since during this process their components are observable by the FAM-C method, the authors found it necessary to include issues related to their diagnosis in this study. In the FAM-C method, the signal from the AC generator during the normal operation of the helicopter is processed. Analysis of this signal allows simultaneous monitoring of multiple engine and transmission components simultaneously. It does not require any separate sensors for this purpose - one "full-time" alternator or tachometer generator is - with proper collection and processing of the output voltage signal - the source of a whole range of diagnostic information. Thus, one generator is an observer of the technical condition of many elements of the power unit simultaneously. What's more, the signal can be collected from any place in the electrical network, which makes it possible to install the measuring system in safe locations, even while the power train is running. Some examples of diagnostic symptoms leading to wear detection are described. Research based on analysis of these findings with the use of the FAM-C method is described in the paper. In the FAM-C method, signal from the AC generator used in routine operation of the helicopter is processed. Signal analysis enables simultaneous monitoring of several engine and transmission elements. Some examples of diagnostic symptoms used to detect wear are described in the paper.
Czasopismo
Rocznik
Strony
art. no. 2022104
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
  • Air Force Institute of Technology, 01-494, Warszawa 46, Księcia Bolesława 6
  • Air Force Institute of Technology, 01-494, Warszawa 46, Księcia Bolesława 6
  • Air Force Institute of Technology, 01-494, Warszawa 46, Księcia Bolesława 6
  • Air Force Institute of Technology, 01-494, Warszawa 46, Księcia Bolesława 6
  • Air Force Institute of Technology, 01-494, Warszawa 46, Księcia Bolesława 6
  • Air Force Institute of Technology, 01-494, Warszawa 46, Księcia Bolesława 6
Bibliografia
  • 1. Ahrabian A, Looney D, Stanković L, Mandic D. Synchrosqueezing-based time-frequency analysis of multivariate data. Signal Processing 2015;106:331-341. https://doi.org/10.1016/j.sigpro.2014.08.010.
  • 2. Carington IB, Wright JR, Cooper JE, Dimitriadis G. A comparison of blade tip timing data analysis methods. Procedings of the Instituation of Mechanical Engineers, Part G, Journal of Aerospace Engineering. 2001;215(5):301-312. https://doi.org/10.1243/0954410011533293.
  • 3. Cui L, Zhang Y, Zhang F, Zhang J and Lee S. Vibration response mechanism of faulty outer race rolling element bearings for quantitative analysis. Journal of Sound and Vibration 2016;364:67-76. https://doi.org/10.1016/j.jsv.2015.10.015.
  • 4. Duan F, Fang Z, Sun Y, Ye S. Real time vibration measurement technique based on tip-timing for rotating blades. Opto-Electronic Engineering, 2005; 30(1):29-31, http//www.paper.edu.cn.
  • 5. Furmanek S, Kraszewski Z. Niezawodność łożysk tocznych. Wydawnictwa Przemysłowe WEMA, Warszawa 1989.
  • 6. Gębura A, Pietnoczko B, Tokarski T. Diagnostic testers operating on the basis of the FAM-C method. Diagnostyka 2016;17(2): 87-94.
  • 7. Gębura A, Stefaniuk M. Monitoring the helicopter transmission using the FAM-C diagnostic method, Diagnostyka. 2017;18(2):75-85.
  • 8. Gębura A, Tokarski T. The monitoring of the bering nodes with excessive radial clearances using the FAM-C and FDM-A methods. Research Works of Air Force Institute of Technology. 2009;25:89-127.
  • 9. Gębura A. Dozorowanie stanu technicznego węzłów łożyskowych i wybranych elementów transmisji zespołu napędowego z wykorzystaniem modulacji częstotliwości napięcia wyjściowego. Wyd. ITWL, 2014.
  • 10. Gębura A. Four models of tribological wear of turbine jet engine bearings based on methods of electrical generator signal analysis. Diagnostyka 2017;18(1):59-66.
  • 11. Ioan D, Viorel P, Spiridon C. The influence of the misalignment on load distribution in angular contact ball bearings. Applied Mechanics and Materials 2014;658:299-304. https://doi.org/10.4028/www. scientific.net/AMM.658.299.
  • 12. Mishra C, Samantaray AK, Chakraborty G, Zhang J, Lee S. Ball bearing defect models: A study of simulated and experimental fault signatures. Journal of Sound and Vibration 2017;400:86-112. https://doi.org/10.1016/j.jsv.2017.04.010.
  • 13. Padfield GD. Flying qualities: forms of degradation. helicopter flight dynamics: the theory and application of flying qualities and simulation modelling. Blackwell Publishing. 2007.
  • 14. Smagała AK. Kęcik K. Nonlinear model and simulation of a rolling bearing. CMES'19, IOP Conf. Series: Materials Science and Engineering 2019;710: 012006. https://doi.org/10.1088/1757-899X/710/1/012006.
  • 15. Warmiński J. Nieliniowe postacie drgań - układy dyskretne, Wydawnictwo Naukowe PWN, Warszawa 2011.
  • 16. Witoś M. Increasing the durability of turbine engines through active diagnostics and control (pol.: Zwiększenie żywotności silników turbinowych poprzez aktywne diagnozowanie i sterowanie). ITWL, Warszawa, 2010: https://doi.org/10.13140/RG.2.1.4341.45.
  • 17. Żurek J. Żywotność śmigłowców. ITWL, Warszawa 2006.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f5d84bb-f521-481c-98f3-1c5eb2f59e26
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.