PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Generating Electricity from Soil Using Different Sources of Manure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study three different types of manure (bird, cattle and sheep) with three doses (10, 20 and 30 g) were mixed with soil to investigate and compare the different performance of energy generation as well as provides the ways of increasing the efficiency for such an application. The mixed soil was incubated for ten days after wetting with tap water as needed, then the voltage and current readings were taken every twenty-four hours for ten days. Experiment results indicated that 30 g cattle manure was the best use for energy generating purposes, delivering a voltage peak of 7.4 mV and current of 0.48 mA compared to 7.4 mV; 0.34 mA for bird manure and 6.56 mV; 0.32 mA for sheep manure. Cattle manure produced the highest peak for voltage with all doses and was therefore the best to use. In general, all treatments provide enough voltage to power the LED bulb successfully.
Słowa kluczowe
Rocznik
Strony
187--192
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
  • Department of Soil and Water Science, College of Agricultural Engineering Sciences, University of Duhok, Duhok 42001, Kurdistan Region, Iraq
Bibliografia
  • 1. Bremner J.M. 1965. Inorganic Forms of Nitrogen. In: Black, C.A., et al., Eds., Methods of Soil Analysis, Part 2, Agronomy Monograph No. 9, ASA and SSSA, Madison, 1179–1237.
  • 2. Elvis F.K., Marx S., Frans W.V. 2015. Impact of soil type on electricity generation from a Microbial Fuel Cell. 7th International Conference on Latest Trends in Engineering and Technology (ICLTET’2015) Irene, Pretoria, South Africa, 2015
  • 3. IEA. 2011. Key world energy statistics 2011. Paris.
  • 4. Lee C.C. 2005. Energy consumption and GDP in developing countries: A cointegrated panel analysis. Energy Economics, 27(3), 415–427.
  • 5. Logan B.E., Berthamelers R., Uweschroder J., Stefanofreguia P., Willyverstraete K. 2006. Microbial Fuel Cells: Methodology and Technology. Environmental Science and Technology, 40(17).
  • 6. MacKay D.J.C. 2009. Sustainable energy-without the hot air. Cambridge: UIT Cambridge Ltd.
  • 7. Murphy J., Riley J.P. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chemical Acta. 27, 31–36.
  • 8. Okalebo J.R., Gathua K.W., Woomer P.L. 2002. Laboratory Methods for Soil and Plant Analysis: A Working Manual. TSBF, Nairobi, 32–35.
  • 9. Page R.H.M., Kenney D.R. 1982. Methods of Analysis: Part 2. Chemical and Microbiological Properties, 2nd ed. The American Society of Agronomy Inc., Madison.
  • 10. Pavithra S.S., Poovarasi S., Karthick R. 2018. Process of generating electricity from home garden plants. International Research Journal of Engineering and Technology (IRJET), 5(3). www.irjet.net
  • 11. Sheffield J. 1998. World population growth and the role of annual energy use per capita. Technological Forecasting and Social Change, 59(1), 55–87.
  • 12. Shiu A., Lam P.L. 2004. Electricity consumption and economic growth in China. Energy Policy; 32(1), 47–54.
  • 13. Soytas U., Sari R. 2003. Energy consumption and GDP: causality relationship in G-7 countries and emerging markets. Energy Economics, 25(1), 33–37.
  • 14. Walkley A.J., Black I.A. 1934. Estimation of soil organic carbon by the chromic acid titration method. Soil Sci., 37, 29–38.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f5a4205-99bd-4b0a-b588-d6cecbe4af22
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.