Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Stan gospodarki obiegu zamkniętego w Polsce
Języki publikacji
Abstrakty
The manuscript presents the condition of circular economy in Poland in diversified approach: subjective (waste streams, energy), sectoral (construction, wastewater treatment, coal energy), related to the resources (phosphorous and anthropogenic minerals) and considering proper energy management (almost zero energy buildings). The achievements reached in different sectors as well as the requirements towards implementation of CE are presented. The advancement of recycling technologies does not deviate from the global level, in terms of areas specific to Poland. Limiting the exploitation of natural resources and usage of new materials as well as producing more durable products are of CE concern. Also energy and heat recovery in buildings and technological processes (e.g. during wastewater treatment), ways of utilization of combustion by-products and water decarbonization waste are described. The implementation of CE in Poland needs not only research and technical activities, but also the modification of technological processes, the right policy, overcoming crosssectoral barriers, developing legal regulations and support schemes for CE.
W niniejszym artykule przeglądowym przedstawiono stan gospodarki obiegu zamkniętego (GOZ) w Polsce. Pokazano GOZ w zróżnicowanym ujęciu: przedmiotowym (strumienie odpadów, energia), sektorowym (budownictwo, oczyszczalnie ścieków, energetyka węglowa) i zasobowym (minerały antropogeniczne, fosfor), a także pod kątem właściwego gospodarowania energią w budownictwie (budynki niemal-zero-energetyczne).
Czasopismo
Rocznik
Tom
Strony
37--80
Opis fizyczny
Bibliogr. 132 poz., il., tab.
Twórcy
autor
- Warsaw University of Technology, Faculty of Building Services Hydro and Environmental Engineering, Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Building Services Hydro and Environmental Engineering, Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Building Services Hydro and Environmental Engineering, Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Building Services Hydro and Environmental Engineering, Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Building Services Hydro and Environmental Engineering, Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Building Services Hydro and Environmental Engineering, Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Building Services Hydro and Environmental Engineering, Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Building Services Hydro and Environmental Engineering, Warsaw, Poland
autor
- Warsaw University of Technology, Applied Research Institute, Anthropogenic Minerals Engineering Centre, Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Building Services Hydro and Environmental Engineering, Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Building Services Hydro and Environmental Engineering, Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Building Services Hydro and Environmental Engineering, Warsaw, Poland
Bibliografia
- 1. “Akcja #ArchitekcidlaKlimatu”, https://sarp.warszawa.pl/akcja-architekcidlaklimatu/ (accessed Apr. 30, 2020).
- 2. “Centrum Inżynierii Minerałów Antropogenicznych IBS PW – strona główna” http://cima.ibs.pw.edu.pl/?page_id=12&lang=pl (accessed Apr. 30, 2020).
- 3. “Ekonomia polityczna” https://pl.wikipedia.org/wiki/Ekonomia_polityczna.
- 4. “Europejski System Handlu Emisjami, Propozycja na okres 2021-2030, Stanowisko sektora cementowego i sektorów energochłonnych”, 2016.
- 5. “Rola cementu w niskoemisyjnej gospodarce do roku 2050”, https://lowcarboneconomy.cembureau.eu/wpcontent/uploads/2018/09/Gospodarka-niskoemisyjna-2050-Sektor-cementowy.pdf (accessed Apr. 30, 2020).
- 6. “The Edge.” https://www.flickr.com/photos/deloittenl/sets/72157651161700593 (accessed Apr. 30, 2020).
- 7. “The making of Circl.” https://circl.nl/themakingof/en/ (accessed Apr. 30, 2020).
- 8. “ZEB Definitions” http://www.zeb.no/index.php/en/about-zeb/zeb-definitions (accessed Apr. 30, 2020).
- 9. „Zagospodarowanie UPS w Polsce i na świecie – produkty, rynki zbytu, perspektywy”, Z. Kledyński, Ł. Szarek (ed.), Monograph Circular Economy - Technologie 1, Oficyna Wydawnicza Politechniki Warszawskiej, Warsaw, p. 12, 2016.
- 10. A. A. Zorpas, K. Lasaridi, “Measuring waste prevention”, Waste Management, 33(5): 1047-1056, 2013, doi: 10.1016/j.wasman.2012.12.017.
- 11. A. Amann, O. Zoboli, J. Krampe, H. Rechberger, M. Zessner, L. Egle, “Environmental impacts of phosphorus recovery from municipal wastewater”, Resources, Conservation and Recycling 130: 127-139, 2018.
- 12. A. Bogdan, M. Chludzinska, “Assessment of thermal comfort using personalized ventilation”, HVAC&R Research 16(4): 529-542, 2010.
- 13. A. Dąbska, “Badania osadów z dekarbonizacji wody w aspekcie ich przydatności do uszczelniania składowisk odpadów”, PhD thesis, Politechnika Warszawska, 2007.
- 14. A. Dąbska, “Hydraulic Conductivity of Compacted Lime-Softening Sludge Used as Landfill Liners”, Water, Air, & Soil Pollution 230(12): 280, 2019.
- 15. A. Garlicka, M. Zubrowska-Sudol, “Effect of hydrodynamic disintegration on the solubilisation and bioavailability of thickened excess sludge”, Ultrasonics Sonochemistry 64, p. 105015, 2020.
- 16. A. Grobelak, W. Stępień, M. Kacprzak, “Osady ściekowe jako składnik nawozów i substytutów gleb”, Inżynieria Ekologiczna, 2016.
- 17. A. Karło, Z. Gieleciak, “Oczyszczalnia ścieków komunalnych elementem gospodarki obiegu zamkniętego”, Gaz, Woda i Technika Sanitarna, 2018.
- 18. A. Komerska, J. Kwiatkowski, J. Rucińska, “Integrated evaluation of CO2eq emission and thermal dynamic simulation for different façade solutions for a typical office building”, Energy Procedia 78: 3216-3221, 2015.
- 19. A. Nieuwenhuijzen, R. Lewis, G. Bergsma, C. Uiterlinde, “Life Cycle Assessment of Resource Recovery from Primary and Waste Activated Sludge”, in IWA Specialist Conference On Sludge Management Sludge Tech.
- 20. A. Picardo, V. M. Soltero, M. E. Peralta, R. Chacartegui, “District heating based on biogas from wastewater treatment plant”, Energy 180: 649-664, 2019.
- 21. A. Rolewicz-Kalińska, A. Oniszk-Popławska, J. Wesołowska, E. D. Ryńska, “Conditions for the development of anaerobic digestion technologies using the organic fraction of municipal solid waste: perspectives for Poland”, Environment, Development and Sustainability, 2016, doi: 10.1007/s10668-016-9808-5.
- 22. A. Rosemarin, G. De Bruijne, I. Caldwell, “Peak phosphorus: the next inconvenient truth” The Broker 15: 6-9, 2009.
- 23. A. Sowińska, M. Kostka, “Pierwsza w Polsce instalacja odzysku fosforu - OŚ w Cielczy” in 13. Konferencja „Metody zagospodarowania osadów ściekowych”, 2019.
- 24. A. Tencati, S. Pogutz, B. Moda, M. Brambilla, C. Cacia, “Prevention policies addressing packaging and packaging waste: Some emerging trends”, Waste Management 56: 35-45, 2016, doi: 10.1016/j.wasman.2016.06.025.
- 25. A. W. Komerska, J. Kwiatkowski, J. Rucińska, “The influence of the building retrofitting to a nearly zero energy standard on the embodied and operational energy and CO2 emission”, Department of Heating and Ventilation, 2017.
- 26. A. Werker, S. Bengtsson, L. Korving, M. Hjort, S. Anterrieu, T. Alexandersson, P. Johansson, A. Karlsson, L. Karabegovic, P. Magnusson, “Consistent production of high quality PHA using activated sludge harvested from full scale municipal wastewater treatment–PHARIO”, Water Science and Technology 78(11): 2256-2269, 2018.
- 27. B. Li, I. Boiarkina, W. Yu, H. M. Huang, T. Munir, G. Q. Wang, B. R. Young, “Phosphorous recovery through struvite crystallization: challenges for future design”, Science of the Total Environment 648: 1244-1256, 2019.
- 28. B. Łuszczek, “Próby zastosowania zdezintegrowanego osadu nadmiernego jako dodatkowego źrodła węgla do procesu denitryfikacji w Oczyszczalni Ścieków Płaszów w Krakowie”, Materiały II Seminarium Naukowo- Technicznego z cyklu" Biologiczne usuwanie związków biogennych", Warszawa, pp. 1-9, 2008.
- 29. B. Van der Bruggen, “The global water recycling situation”, Sustainability Science and Engineering 2: 41-62, 2010.
- 30. C. Kabbe, “Overview of phosphorus recovery from the wastewater stream facilities operating or under construction”, Phosphorus Recovery and Recycling; Springer: Berlin, Germany, 2017.
- 31. C. Macintosh, S. Astals, C. Sembera, A. Ertl, J. E. Drewes, P. D. Jensen, K. Koch, “Successful strategies for increasing energy self-sufficiency at Grüneck wastewater treatment plant in Germany by food waste codigestion and improved aeration”, Applied Energy 242: 797-808, 2019.
- 32. Communication from The Commission to The European Parliament, The Council, The European Economic and Social Committee and The Committee of The Regions On the review of the list of critical raw materials for the EU and the implementation of the Raw Materia. The Commission to The European Parliament, The Council, The European Economic and Social Committee and The Committee of The Regions.
- 33. Communication from The Commission to The European Parliament, The Council, The European Economic and Social Committee and The Committee of The Regions on the 2017 list of Critical Raw Materials for the EU. The Commission to The European Parliament, The Council, The European Economic and Social Committee and The Committee of The Regions.
- 34. D. Cordell, J.-O. Drangert, S. White, “The story of phosphorus: global food security and food for thought”, Global Environmental Change 19(2): 292-305, 2009.
- 35. D. Fathali, A. R. Mehrabadi, M. Mirabi, M. Alimohammadi, “Investigation on nitrogen removal performance of an enhanced post-anoxic membrane bioreactor using disintegrated sludge as a carbon source: An experimental study”, Journal of Environmental Chemical Engineering 7(6): p. 103445, 2019.
- 36. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy 22(12): 2000, 2000.
- 37. E. Heid, “Turning Waste into Energy and Fertiliser”, 2006.
- 38. E. M. Foundation, “Growth within: a circular economy vision for a competitive europe”, Ellen MacArthur Foundation, p. 100, 2015.
- 39. E. Ryńska, U. Koźmińska, J. Rucińska, “Effectivity–ecosphere–economics in nZEB retrofit procedures”, Environmental Science and Pollution Research 26(29): 29544-29559, 2019.
- 40. E. Tilley, Compendium of sanitation systems and technologies. Eawag, 2014.
- 41. E. v Münch, A. Schöpe, S. Rüd, “Ecosan–recycling oriented wastewater management and sanitation systems GTZ”, 2009.
- 42. EEA Report No 26/2019, “Resource efficiency and the circular economy in Europe 2019 – even more from less. An overview of the policies, approaches and targets of 32 European countries”, 2020, [Online]. Available: https://www.eea.europa.eu/publications/even-more-from-less.
- 43. European Commission, “Disposal and Recycling Routes for Sewage Sludge, Part 3 – Scientific and Technical Report”, Luxembourg, 2001.
- 44. Eurostat, “Municipal waste statistics: 2005 and 2018”. https://webcache.googleusercontent.com/search?q=cache:iGnFep21CeMJ:https://ec.europa.eu/eurostat/statistics-explained/index.php/Municipal_waste_statistics+&cd=4&hl=pl&ct=clnk&gl=pl, 2019, (accessed Apr. 30, 2020).
- 45. F. Chyliński, P. Łukowski, “Wykorzystanie odpadu z produkcji bieli tytanowej jako dodatku do betonu”, Materiały Budowlane, 2018.
- 46. F. Gallo, C. Fossi, R. Weber, D. Santillo, J. Sousa, I. Ingram, A. Nadal, D. Romano, “Marine litter plastics and microplastics and their toxic chemicals components: the need for urgent preventive measures”, Environmental Sciences Europe 30(1), 2018, doi: 10.1186/s12302-018-0139-z.
- 47. G. K. MacDonald, E. M. Bennett, P. A. Potter, N. Ramankutty, “Agronomic phosphorus imbalances across the world’s croplands”, Proceedings of the National Academy of Sciences 108(7): 3086-3091, 2011.
- 48. Global Phosphate Forum, “Perspectives for phosphates in detergents” in Phosphates 2010 International Conference, 2010.
- 49. H. Bukowski, W. Fabrycka, “Budownictwo w obiegu zamkniętym w praktyce”, Warszawa, 2019. [Online]. Available: https://innowo.org/userfiles/publikacje/Budownictwo w obiegu zamkniętym w praktyce_raport.pdf.
- 50. H. Lee, T. P. Tan, “Singapore’s experience with reclaimed water: NEWater”, International Journal of Water Resources Development 32(4): 611-621, 2016.
- 51. H. Mattenberger, G. Fraißler, T. Brunner, P. Herk, L. Hermann, I. Obernberger, “Sewage sludge ash to phosphorus fertiliser: variables influencing heavy metal removal during thermochemical treatment”, Waste Management 28(12): 2709-2722, 2008.
- 52. H. W. H. Menkveld, E. Broeders, “Recovery of ammonium from digestate as fertilizer”, Water Practice and Technology 12(3): 514-519, 2017.
- 53. I. R. Richards, C. J. Dawson, “Phosphorus imports, exports, fluxes and sinks in Europe”, 2008.
- 54. I. TU-Darmstadt, “Phosphorus Recovery website”, Darmstadt, available: www. phosphorus-recovery. tudarmstadt. de, Technische Universität Darmstadt, Institut WAR, 2010.
- 55. J. Driver, “Phosphates recovery for recyling from sewage and animal wastes” Phosphorus and Potassium 216: 17-21, 1998.
- 56. J. Driver, D. Lijmbach, I. Steen, “Why recover phosphorus for recycling, and how?” Environmental Technology 20(7): 651-662, 1999.
- 57. J. Kwiatkowski, A. Komerska, J. Rucińska, A. Trząski, M. Mijakowski, “Nowoczesne technologie budowlane ograniczające zużycie energii”, in Budynki o niemal zerowym zużyciu energii, J. Sowa, Ed., 2017.
- 58. J. L. Barnard, “Elimination of eutrophication through resource recovery” in K. Ashley, D. Mavinic, & F. Koch, International Conference on Nutrient Recovery from Wastewater Streams, pp. 1-22, 2009.
- 59. J. Lewandowski, T. Szczygielski, “Bezodpadowa Energetyka Węglowa. Obniżać koszty i ograniczać ryzyka” in X Konferencja Naukowo-Techniczna Ochrona Środowiska w Energetyce, 2015.
- 60. J. Lubensky, M. Ellersdorfer, K. Stocker, “Ammonium recovery from model solutions and sludge liquor with a combined ion exchange and air stripping process”, Journal of Water Process Engineering 32: p. 100909, 2019.
- 61. J. Malinauskaite, H. Jouhara, D. Czajczyńska, P. Stanchev, E. Katsou, P. Rostkowski, R. J. Thorne, J. Colón, S. Ponsá, F. Al-Mansour, L. Anguilano, R. Krzyżyńska, I. C. López, A.Vlasopoulos, N. Spencer, “Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe”, Energy 141: 2013-2044, 2017, doi: 10.1016/j.energy.2017.11.128.
- 62. K. Ashley, D. Mavinic, F. Koch, “IWA Publishing: London” UK, 2009.
- 63. K. Kalemba, K. Barbusiński, “Próba współfermentacji osadów ściekowych z odpadami mięsnymi”, Ochrona Środowiska 38(4): 21-24, 2016.
- 64. K. Szczygielski, “Tefra Project – The usage of the anthropogenic minerals as the CO2 emission reduction materials”, World of Coal Ash (WOCA) Conference in Nasvhille, May 5-7, 2015.
- 65. K. Y. Park, J. W. Lee, K. G. Song, K. H. Ahn, “Ozonolysate of excess sludge as a carbon source in an enhanced biological phosphorus removal for low strength wastewater”, Bioresource Technology 102(3): 2462- 2467, 2011.
- 66. K. Załęgowski, W. Jackiewicz-Rek, A. Garbacz, L. Courard, “Ślad węglowy betonu”, Materiały Budowlane 496: 1-3, 2013.
- 67. KPMG, “Ekspertyza dotycząca możliwości wdrożenia metodyki BIM w Polsce”, 2016.
- 68. L. Bouwman, K. K. Goldewijk, K. W. Van Der Hoek, A. H. W. Beusen, D. P. Van Vuuren, J. Willems, M. C. Rufino, E. Stehfest, “Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period”, Proceedings of the National Academy of Sciences 110(52): 20882–20887, 2013.
- 69. L. Herrmann, “Recovery of Phosphorus from Wastewater Treatment (translated from:Rückgewinnung von Phosphor aus der Abwasserreinigung, eine Bestandsaufnahme)”, Umwelt-Wissen 0929, 2009.
- 70. L. Peng, L. Appels, H. Su, “Combining microwave irradiation with sodium citrate addition improves the pretreatment on anaerobic digestion of excess sewage sludge”, Journal of environmental management 213: 271-278, 2018.
- 71. L. Principato, L. Ruini, M. Guidi, L. Secondi, “Adopting the circular economy approach on food loss and waste: The case of Italian pasta production”, Resources, Conservation and Recycling 144: 82-89, 2019, doi: 10.1016/j.resconrec.2019.01.025.
- 72. L. Raschid-Sally, P. Jayakody, "Drivers and characteristics of wastewater agriculture in developing countries: Results from a global assessment" 127, IWMI, 2009.
- 73. Ł. Machniak, W. Kozioł, “Kruszywa alternatywne – baza zasobowa i kierunki wykorzystania w budownictwie”, D. Lerch (ed.), Kruszywa 4: 28-33, Katowice, 2014.
- 74. Ł. Szarek, M. Wojtkowska, “Properties of fly ash from thermal treatment of municipal sewage sludge in terms of EN 450-1”, Archives of Environmental Protection 44(1), 2018, doi: 10.24425/118182.
- 75. Ł. Szarek, P. Falaciński, M. Wojtkowska, “Immobilization of selected heavy metals from fly ash from thermal treatment of municipal sewage sludge in hardening slurries”, Archives of Civil Engineering 64(3), 2018, doi: 10.2478/ace-2018-0034.
- 76. M. Alwaeli, “An overview of municipal solid waste management in Poland. The current situation, problems and challenges”, Environment Protection Engineering 41(4): 181-193, 2015, doi: 10.5277/epel50414.
- 77. M. Cyranka, M. Jurczyk, T. Pajak, “Municipal Waste-To-Energy plants in Poland-current projects”, E3S Web of Conferences, 10 (no. January), 2016, doi: 10.1051/e3sconf/20161000070.
- 78. M. Dąbrowski, “Rozwój kofermentacji oraz kogeneracja oczyszczalni ścieków w Ostródzie. Analiza ekonomiczna elektrociepłowni”, in Konferencja „Efektywność energetyczna w przedsiębiorstwach Wod-Kan”, 2018.
- 79. M. Kępniak, P. Woyciechowski, P. Łukowski, J. Kuziak, R. Kobyłka, “The Durability of Concrete Modified by Waste Limestone Powder in the Chemically Aggressive Environment”, Materials 12(10), p. 1693, 2019.
- 80. M. Kosior-Kazberuk, “Nowe dodatki mineralne do betonu”, Budownictwo i inżynieria środowiska 2: 47-55, 2011.
- 81. M. M. Sozański, Technologia usuwania i unieszkodliwiania osadów z uzdatniania wody. Poznań: Wydawnictwo Politechniki Poznańskiej, 1999.
- 82. M. Smol, J. Kulczycka, K. Gorazda, Z. Wzorek, “Odzysk fosforu ze spopielonych osadów ściekowych - przykład dobrych praktyk w gospodarce o obiegu zamkniętym”, Wodociągi-Kanalizacja 12: 48-50, 2016.
- 83. M. Wojtkowska, D. Bojanowski, “Influence of Catchment Use on the Degree of River Water Pollution by Forms of Phosphorus” Rocznik Ochrona Środowiska 20, 2018.
- 84. M. Zubrowska-Sudol, J. Podedworna, K. Sytek-Szmeichel, A. Bisak, P. Krawczyk, A. Garlicka, “The effects of mechanical sludge disintegration to enhance full-scale anaerobic digestion of municipal sludge”, Thermal Science and Engineering Progress 5: 289-295, 2018.
- 85. M. Zubrowska-Sudol, J. Walczak, “Enhancing combined biological nitrogen and phosphorus removal from wastewater by applying mechanically disintegrated excess sludge”, Water Research 76: 10-18, 2015.
- 86. Ministry of Development, Polish Roadmap for Transformation Towards a Circular Economy (in Polish), 2019.
- 87. N. Gilbert, “The disappearing nutrient: phosphate-based fertilizers have helped spur agricultural gains in the past century, but the world may soon run out of them. Natasha Gilbert investigates the potential phosphate crisis”, Nature 461(7265): 716-719, 2009.
- 88. O. Hollins, P. Lee, E. Sims, O. Bertham, H. Symington, N. Bell, P. Sjögren, P. Lucie, "Towards a circular economy - Waste management in the EU Study", IP/G/STOA/FWC/2013-001/LOT 3/C3. Brussels: Scientific Foresight Unit (STOA), 2017.
- 89. O. Larriba, E. Rovira, Z. Juznic-Zonta, A. Guisasola, J. A. Baeza, “Evaluation of the integration of P recovery, polyhydroxyalkanoate production and short cut nitrogen removal in a mainstream wastewater treatment process”, Water Research 172: p. 115474, 2020.
- 90. Ochrona Środowiska 2018 [Environmental Protection], Central Statistical Office, Warsaw, p. 142, 2018.
- 91. P. Falaciński, Ł. Szarek, “Possible Applications of Hardening Slurries with Fly Ash from Thermal Treatment of Municipal Sewage Sludge in Environmental Protection Structures”, Archives of Hydroengineering and Environmental Mechanics 63(1), 2016, doi: 10.1515/heem-2016-0004.
- 92. P. Heffer, M. P. -77th I. A. Conference, undefined 2009, “Fertilizer Outlook 2009-2013.”
- 93. P. N. Patil, P. R. Gogate, L. Csoka, A. Dregelyi-Kiss, M. Horvath, “Intensification of biogas production using pretreatment based on hydrodynamic cavitation”, Ultrasonics sonochemistry 30: 79-86, 2016.
- 94. P. Woyciechowski, P. Woliński, G. Adamczewski, “Prediction of carbonation progress in concrete containing calcareous fly ash co-binder”, Materials 12(17), p. 2665, 2019.
- 95. P. Woyciechowski, W. Jackiewicz-Rek, “Ecological aspects of concrete carbonation”, in The 9th Central European Congress on Concrete Engineering, 2013.
- 96. PlasticsEurope, “Plastics – the Facts”, Plastics – the Facts 2018, p. 38, 2018.
- 97. R. A. Rehman, M. F. Qayyum, “Co-composts of sewage sludge, farm manure and rock phosphate can substitute phosphorus fertilizers in rice-wheat cropping system”, Journal of Environmental Management 259: p. 109700, 2020.
- 98. R. Ossowski, Z. Sikora, „Perspektywy zastosowania materiałów antropogenicznych w kontekście zielonej geotechniki”, P. Koszelnik (ed.), Zeszyty Naukowe Politechniki Rzeszowskiej, Budownictwo i Inżynieria Środowiska 283(59), 2012.
- 99. R. Xu, Y. Fan, Y. Wei, Y. Wang, N. Luo, M. Yang, X. Yuan, R. Yu, “Influence of carbon sources on nutrient removal in A2/O-MBRs: Availability assessment of internal carbon source”, Journal of Environmental Sciences 48: 59-68, 2016.
- 100. Rozporządzenie Ministra Klimatu z dnia 2 stycznia 2020 r. w sprawie katalogu odpadów (Dz.U. 2020 poz. 10).
- 101. Rozporządzenie Ministra Klimatu z dnia 2 stycznia 2020 r. w sprawie katalogu odpadów.
- 102. S. A. Esrey, I. Andersson, A. Hillers, R. Sawyer, Closing the loop: ecological sanitation for food security. 2001.
- 103. S. Cytwa, “Możliwość poprawy efektywności energetycznej oczyszczalni ścieków poprzez wspólną fermentację osadu i różnych odpadów organicznych”, in 2. Konferencja „Efektywność energetyczna w przedsiębiorstwach Wod-Kan”, 2018.
- 104. S. Dahiya, A. N. Kumar, J. Shanthi Sravan, S. Chatterjee, O. Sarkar, S. V. Mohan, “Food waste biorefinery: Sustainable strategy for circular bioeconomy”, Bioresource Technology 248: 2-12, 2018, doi: 10.1016/j.biortech.2017.07.176.
- 105. S. Góralczyk, D. Kukielska, „Surowce wtórne bazą zasobową do produkcji kruszyw”, Prace Naukowe Instytutu Górnictwa Politechniki Wrocławskiej 136(43): 49-59, Wrocław, 2013.
- 106. S. Sakai, J. Yano, Y. Hirai, M. Asari, R. Yanagawa, T. Matsuda, H. Yoshida, T. Yamada, N. Kajiwara, G. Suzuki, T. Kunisue, S. Takahashi, K. Tomoda, J. Wuttke, P. Mählitz, V. S. Rotter, M. Grosso, T. F. Astrup, J. Cleary, et al., “Waste prevention for sustainable resource and waste management”, Journal of Material Cycles and Waste Management 19(4): 1295-1313, 2017, doi: 10.1007/s10163-017-0586-4.
- 107. S. Scherhaufer, G. Moates, H. Hartikainen, K. Waldron, G. Obersteiner, “Environmental impacts of food waste in Europe”, Waste Management, 77: 98-113, 2018, doi: 10.1016/j.wasman.2018.04.038.
- 108. Statistical Analyses. Central Statistical Office, “Gospodarka paliwowo-energetyczna w latach 2017 i 2018”, Warsaw, p. 23, 2019.
- 109. T. Ciesielczuk, C. Rosik-Dulewska, G. Kusza, “Ekstrakcja fosforu z osadów ściekowych i popiołów ze spalania osadów-analiza problemu”, 2016.
- 110. T. P. Thomsen, H. Hauggaard-Nielsen, B. Gøbel, P. Stoholm, J. Ahrenfeldt, U. B. Henriksen, D. S. Müller- Stöver, “Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge. Part 2: Evaluation of ash materials as phosphorus fertilizer”, Waste Management 66: 145-154, 2017.
- 111. T. Szczygielski, “Mniej odpadów z energetyki”, Rzeczpospolita, Nov. 30, 2017.
- 112. T. Szczygielski, “Uboczne produkty spalania w drogownictwie – normy a aprobaty techniczne”, Materials of the Polish CB Union Association.
- 113. T. Szczygielski, „Przyczynki do Bezodpadowej Energetyki Węglowej (BEW)”, 24th International Conference “Ashes from Power”, T. Szczygielski (ed.), 21, 2014.
- 114. T. Szczygielski, „W kierunku bezodpadowej Energetyki węglowej – Uzdatnianie minerałów antropogenicznych w procesach energetycznych”, 23rd International Conference “Ashes from Power”, T. Szczygielski (ed.), 23, 2016.
- 115. T. Szczygielski, D. Masłowska, “Gospodarka obiegu zamkniętego a odpady mineralne”, 2020.
- 116. T. Szczygielski, D. Masłowska, „Przyczynki do systematyki zasobów antropogenicznych”, 24th International Conference “Ashes from Power”, T. Szczygielski (ed.), 2017.
- 117. The European Parliament and The Council Of The European Union, “Directive (EU) 2018/851 of the European Parliament and of the Council of 30 May 2018 amending Directive 2008/98/EC on waste (Text with EEA relevance)”, 2018.
- 118. The European Parliament and The Council Of The European Union, “Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives (Text with EEA relevance)”, pp. 3-30, 2008.
- 119. The European Parliament and The Council Of The European Union, “Directive (EU) 2019/904 of the European Parliament and of the Council of 5 June 2019 on the reduction of the impact of certain plastic products on the environment (Text with EEA relevance)”, 2019.
- 120. V. Ripoll, C. Agabo-García, M. Perez, R. Solera, “Improvement of biomethane potential of sewage sludge anaerobic co-digestion by addition of ‘sherry-wine’ distillery wastewater”, Journal of Cleaner Production 251, p. 119667, 2020.
- 121. W. H. Organization, WHO guidelines for the safe use of wasterwater excreta and greywater, vol. 1. World Health Organization, 2006.
- 122. W. Jackiewicz-Rek, J. Kuziak, B. Jaworska, “Analysis of the properties of expansive concrete with portland and blast furnace cement”, Archives of Civil Engineering 64(4): 175-196, 2018.
- 123. W. Jackiewicz-Rek, P. Woyciechowski, “Carbonation rate of air-entrained fly ash concretes”, Cem. Wapno Beton 16: 249-256, 2011.
- 124. W. Podewils, “Oczyszczanie osadów ściekowych w Niemczech - strategia i wyzwania rozwoju” in 13th Konferencja „Metody zagospodarowania osadów ściekowych”, 2019.
- 125. W. Schipper, L. Korving, “Full-scale plant test using sewage sludge ash as raw material for phosphorus production” in International conference on nutrient recovery from wastewater streams, ed. K. Ashley, D. Mavinic, and F. Koch, pp. 591–598, 2009.
- 126. W. Schmitt, “Raport końcowy” in Zastosowanie systemu CROWN służącego do dezintegracji osadu recyrkulowanego na Centralnej oczyszczalni ścieków w Wiesbaden-stolicy Hesji, Mat. Konf. Gdańska Fundacja Wody, 2006.
- 127. Y. Ye, H. H. Ngo, W. Guo, Y. Liu, J. Li, Y. Liu, X. Zhang, H. Jia, “Insight into chemical phosphate recovery from municipal wastewater”, Science of the Total Environment 576: 159-171, 2017.
- 128. Z. Kledynski, A. Machowska, “Hardening slurries with ground granulated blast furnace slag activated with fluidal fly ash from lignite combustion”, Przemysl Chemiczny 92(4): 490-497, 2013.
- 129. Z. Kledyński, L. Rafalski, “Zawiesiny twardniejące”, Warszawa. KILiW PAN, IPPT PAN, 2009.
- 130. Z. Kledyński, Ł. Szarek, Eds., "Zagospodarowanie ubocznych produktów spalania", Circular Economy - Technologie 1, Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej, 2016.
- 131. Z. Kledyński, P. Falaciński, A. Machowska, J. Dyczek, “Utilisation of CFBC fly ash in hardening slurries for flo8od-protecting dikes”, Archives of Civil Engineering 62(3): 75-88, 2016.
- 132. Z. Kledyński, P. Falaciński, Ł. Szarek, Ł. Krysiak, A. Machowska, B. Pacewska, I. Wilińska, A. Dąbska, P. Popielski, A. Ostrowski, M. Wojtkowska, "Mieszanki łupka przywęglowego i ubocznych produktów fluidalnego spalania węgla", Circular Economy - Technologie 2, Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej, 2017.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f58f117-294b-4f37-bc10-b468f7e64c2c