PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal Properties of Carbon Nanotube (CNT) Reinforced Polyvinyl Alcohol (PVA) Composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Homogeneous Polyvinyl alcohol (PVA)/Carbon nanotube (CNT) composite has been prepared by solution casting method using gum acacia as a surfactant. CNT content in the composite was varied from 5-10 % by weight. The thermal properties of PVA/CNT composites were investigated by Thermo Gravimetric/Differential Thermal Analyzer (TG/DTA) and Thermo Mechanical Analyzer (TMA). TG/DTA results showed that higher thermal stability in higher percentage of CNT in the composites. The 10 % CNT containing PVA composite exhibit highest onset of melting, glass transition point and offset of melting temperature and the recoded values are 330.4K, 379K and 421.3K respectively. All of the result indicates that the developed PVA/CNT composite might be promising for use in solar cell application.
Słowa kluczowe
Rocznik
Tom
Strony
59--66
Opis fizyczny
Bibliogr. 14 poz., tab., rys.
Twórcy
autor
  • Department of Electrical and Electronic Engineering, Bangladesh University of Business and Technology (BUBT), Dhaka - 1216, Bangladesh
autor
  • Department of Physics, University of Chittagong, Chittagong - 4331, Bangladesh
  • Institute of Radiation and Polymer Technology, Bangladesh Atomic Energy Commission, Dhaka - 1000, Bangladesh
autor
  • Pilot Plant and Process Development Centre, Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh
autor
  • Department of Physics, Jahangirnagar University, Savar, Dhaka - 1342, Bangladesh
autor
  • Institute of Radiation and Polymer Technology, Bangladesh Atomic Energy Commission, Dhaka - 1000, Bangladesh
Bibliografia
  • [1] Kroto H. W., Rev. Mod. Phy. 69 (1991) 703. http://www.des.upatras.gr/physics/christides/pdf%5CKroto.pdf
  • [2] Ishida H., Campbell S., Blackwell J., Chem. Mater. 12 (2000) 1260-1267.
  • [3] Vaia R. A., Giannelis E. P., MRS Bulletin 26 (2001) 394-401.DOI:10.1557/mrs2001.93
  • [4] Cumings John, Zettl A., Science 289 (2000) 602-604.http://mse.umd.edu/~cumings/PDF%20Publications/02.Sci289cumings.pdf
  • [5] S. Iijima, Nature 354 (1991) 56-58. http://www.nature.com/physics/looking-back/iijima/iijima.pdf
  • [6] Qian D., Dickey E. C., Andrews R., Rantell T., Appl. Phys. Lett. 72 (1998) 188-190. http://dx.doi.org/10.1063/1.120680
  • [7] Zhang X., Liu T., Kumar, S., Moore V. C., Hauge R. H., Smalley R. E., Nano Letters 03 (2003) 1285-1288. DOI: 10.1021/nl034336t
  • [8] Chen XL, Liu YJ, Computational Materials Science 29 (2004) 1-11. http://dx.doi.org/10.1016/S0927-0256(03)00090-9
  • [9] Iijima S., Ichlhashi T., Nature 363 (1993) 603-605. doi:10.1038/363603a0
  • [10] C. A. Cooper, S. R. Cohen, A. H. Barber, Appl. Phys. Lett. 81 (2002) 3873-3875.
  • [11] Wagner H. D., Chem. Phys. Lett. 361(2002) 57-61. DOI: 10.1016/S0009-2614(02)00948-X
  • [12] Zaho Q., Nardali M.B., Bernholc J., Phys. Rev. B 65 (2002) 144105. DOI:10.1103/PhysRevB.65.144105
  • [13] Shaffer M. S. P., Windle A. H., Advan. Mater. 11 (1999) 937-941. DOI: 10.1002/(SICI)1521-4095(199908)11:11<937::AID-ADMA937>3.0.CO;2-9
  • [14] Lourie O., Wagner H. D., Appl. Phys. Lett. 73 (1998) 3527-3529. http://dx.doi.org/10.1063/1.122825
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f54859d-5fec-4ace-8b74-2a9af36c50c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.