Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Introduction: Nanoparticles (NPs) have been proven to enhance radiotherapy doses as radiosensitizers. The introduction of coating materials such as polyethylene glycol (PEG) to NPs could impact the NPs’ biocompatibility and their effectiveness as radiosensitizers. Optimization of surface coating is a crucial element to ensure the successful application of NPs as a radiosensitizer in radiotherapy. This study aims to investigate the influence of bismuth oxide NPs (BiONPs) coated with PEG on reactive oxygen species (ROS) generation on HeLa cervical cancer cell line. Material and methods: Different PEG concentrations (0.05, 0.10, 0.15 and 0.20 mM) were used in the synthesis of the NPs. The treated cells were irradiated with 6 and 12 MeV electron beams with a delivered dose of 3 Gy. The reactive oxygen species (ROS) generation was measured immediately after and 3 hours after irradiation. Results: The intracellular ROS generation was found to be slightly influenced by electron beam energy and independent of the PEG concentrations. Linear increments of ROS percentages over the 3 hours of incubation time were observed. Conclusions: Finally, the PEG coating might not substantially affect the ROS generated and thus emphasizing the functionalized BiONPs application as the radiosensitizer for electron beam therapy.
Słowa kluczowe
Rocznik
Tom
Strony
69--76
Opis fizyczny
Bibliogr. 62 poz., rys.
Twórcy
autor
- Medical Radiation Programme, School of Health Sciences, Universiti Sains Malaysia, Malaysia
autor
- Faculty of Health and Life Sciences, Management and Science University, Malaysia
- Medical Radiation Programme, School of Health Sciences, Universiti Sains Malaysia, Malaysia
autor
- Department of Nuclear Medicine, Radiotherapy & Oncology, Hospital Universiti Sains Malaysia, Malaysia
autor
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Malaysia
autor
- Physics Department, Faculty of Science, Taif University, Saudi Arabia
autor
- Medical Radiation Discipline, School Medical Sciences, RMIT University, Australia
autor
- Medical Radiation Discipline, School Medical Sciences, RMIT University, Australia
Bibliografia
- 1. Alamzadeh Z, Beik J, Mirrahimi M, et al. Gold nanoparticles promote a multimodal synergistic cancer therapy strategy by co-delivery of thermo-chemo-radio therapy. Eur J Pharm Sci. 2020;145(105235):1-8. https://doi.org/10.1016/j.ejps.2020.105235
- 2. Ahmad R, Schettino G, Royle G, et al. Radiobiological Implications of Nanoparticles Following Radiation Treatment. Part Part Syst Charact. 2020;1900411. https://doi.org/10.1002/ppsc.201900411
- 3. Igaz N, Szőke K, Kovács D, et al. Synergistic radiosensitization by gold nanoparticles and the histone deacetylase inhibitor SAHA in 2D and 3D cancer cell cultures. Nanomaterials. 2020;10(1). https://doi.org/10.3390/nano10010158
- 4. Moradi F, Rezaee Ebrahim Saraee K, Abdul Sani SF, Bradley DA. Metallic nanoparticle radiosensitization: The role of Monte Carlo simulations towards progress. Radiat Phys Chem. 2021;180(109294). https://doi.org/10.1016/j.radphyschem.2020.109294
- 5. Cunningham C. Radiosensitization Effects of Gold Nanoparticles in Proton Therapy. Msc. Published online 2017
- 6. Yang C, Bromma K, Sung W, Schuemann J, Chithrani D. Determining the radiation enhancement effects of gold nanoparticles in cells in a combined treatment with cisplatin and radiation at therapeutic megavoltage energies. Cancers (Basel). 2018;10(150):1-16. https://doi.org/10.3390/cancers10050150
- 7. Rahman WNWA, Rashid RA, Muhammad M, Dollah N, Razak KA, Geso M. Dose Enhancement by Different Size of Gold Nanoparticles Under Irradiation of Megavoltage Photon Beam. J Sains Nukl Malaysia. 2018;30(2):23-29
- 8. Abdul Rashid R, Zainal Abidin S, Khairil Anuar MA, et al. Radiosensitization effects and ROS generation by high Z metallic nanoparticles on human colon carcinoma cell (HCT116) irradiated under 150 MeV proton beam. OpenNano. 2019;4:100027. https://doi.org/10.1016/j.onano.2018.100027
- 9. Rahman WNWA. Gold nanoparticles: novel radiobiological dose enhancement studies for radiation therapy, synchrotron based microbeam and stereotactic radiotherapy. PhD. 2010
- 10. Verry C, Sancey L, Dufort S, et al. Treatment of multiple brain metastases using gadolinium nanoparticles and radiotherapy: NANO-RAD, a phase I study protocol. BMJ Open. 2019;9(2):1-6. https://doi.org/10.1136/bmjopen-2018-023591
- 11. Bonvalot S, Le Pechoux C, De Baere T, et al. First-in-human study testing a new radioenhancer using nanoparticles (NBTXR3) activated by radiation therapy in patients with locally advanced soft tissue sarcomas. Clin Cancer Res. 2017;23(4):908-917. https://doi.org/10.1158/1078-0432.CCR-16-1297
- 12. Muhammad MA, Rashid RA, Lazim RM, Dollah N, Razak KA, Rahman WN. Evaluation of radiosensitization effects by Platinum nanodendrites for 6 MV photon beam radiotherapy. Radiat Phys Chem. 2018;150:40-45. https://doi.org/10.1016/j.radphyschem.2018.04.018
- 13. Lazim RM, Rashid RA, Pham BTT, Hawkett BS, Geso M, Rahman WN. Radiation Dose Enhancement Effects of Superparamagnetic Iron Oxide nanoparticles to the T24 Bladder Cancer Cell Lines Irradiated with Megavoltage Photon Beam Radiotheray. J Sains Nukl Malaysia. 2018;30(2):30-38
- 14. Algethami M, Geso M, PIva T, et al. Radiation Dose Enhancement Using Bi2S3 Nanoparticles in Cultured Mouse PC3 Prostate and B16 Melanoma Cells. NanoWorld J. 2015;1(3). https://doi.org/10.17756/nwj.2015-013
- 15. Rajaee A, Wang S, Zhao L. Bismuth-based nanoparticles as radiosensitizer in low and high dose rate brachytherapy. Polish J Med Phys Eng. 2019;25(2):79-85. https://doi.org/10.2478/pjmpe-2019-0011
- 16. Zhou R, Wang H, Yang Y, et al. Tumor microenvironment-manipulated radiocatalytic sensitizer based on bismuth heteropolytungstate for radiotherapy enhancement. Biomaterials. 2019;189:11-22. https://doi.org/10.1016/j.biomaterials.2018.10.016
- 17. Deng J, Xu S, Hu W, Xun X, Zheng L, Su M. Tumor targeted, stealthy and degradable bismuth nanoparticles for enhanced X-ray radiation therapy of breast cancer. Biomaterials. 2018;154:24-33. https://doi.org/10.1016/j.biomaterials.2017.10.048
- 18. Sisin NNT, Abidin SZ, Yunus MA, Zin HM, Razak KA, Rahman WN. Evaluation of Bismuth Oxide Nanoparticles as Radiosensitizer for Megavoltage Radiotherapy. Int J Adv Sci Eng Inf Technol. 2019;9(4):1434-1443. https://doi.org/10.18517/ijaseit.9.4.7218
- 19. Sisin NNT, Abdul Razak K, Zainal Abidin S, et al. Radiosensitization Effects by Bismuth Oxide Nanoparticles in Combination with Cisplatin for High Dose Rate Brachytherapy. Int J Nanomedicine. 2019;14:9941-9954
- 20. Zhou R, Liu X, Wu Y, et al. Suppressing the radiation-induced corrosion of bismuth nanoparticles for enhanced synergistic cancer radiophototherapy. ACS Nano. 2020;14(10):13016-13029. https://doi.org/10.1021/acsnano.0c04375
- 21. Rahman WN, Bishara N, Ackerly T, et al. Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomedicine Nanotechnology, Biol Med. 2009;5:136-142. https://doi.org/10.1016/j.nano.2009.01.014
- 22. Rashid RA, Razak KA, Geso M, Abdullah R, Dollah N, Rahman WN. Radiobiological Characterization of the Radiosensitization Effects by Gold Nanoparticles for Megavoltage Clinical Radiotherapy Beams. Bionanoscience. 2018;8(3):713-722. https://doi.org/10.1007/s12668-018-0524-5
- 23. Smith CL, Ackerly T, Best SP, et al. Determination of dose enhancement caused by gold-nanoparticles irradiated with proton, X-rays (kV and MV) and electron beams, using alanine/EPR dosimeters. Radiat Meas. 2015;82:122-128. https://doi.org/10.1016/j.radmeas.2015.09.008
- 24. Rahman WN, Kadian SNM, Ab Rashid R, et al. Radiosensitization characteristic of superparamagnetic iron oxide nanoparticles in electron beam radiotherapy and brachytherapy. J Phys Conf Ser. 2019;1248:1-6. https://doi.org/10.1088/1742-6596/1248/1/012068
- 25. Abidin SZ, Zulkifli ZA, Razak KA, Zin H, Yunus MA, Rahman WN. PEG coated bismuth oxide nanorods induced radiosensitization on MCF-7 breast cancer cells under irradiation of megavoltage radiotherapy beams. Mater Today Proc. 2019;16:1640-1645. https://doi.org/10.1016/j.matpr.2019.06.029
- 26. Abidin SZ, Razak KA, Zin H, et al. Comparison of clonogenic and PrestoBlue assay for radiobiological assessment of radiosensitization effects by bismuth oxide nanorods. Mater Today Proc. 2019;16:1646-1653. https://doi.org/10.1016/j.matpr.2019.06.030
- 27. Seabra A, Durán N. Nanotoxicology of Metal Oxide Nanoparticles. Metals (Basel). 2015;5(2):934-975. https://doi.org/10.3390/met5020934
- 28. Chithrani BD, Ghazani AA, Chan WCW. Determining the Size and Shape Dependence of Gold Nanoparticles Uptake Into Mammalian Cells. Nano Lett. 2006;6(4):662-668. https://doi.org/10.1021/nl052396o
- 29. Venkatesh DN, Rao P. Nanoparticles For Cancer Treatment - A Comprehensive Review. World J Pharm Pharm Sci. 2016;5(9):481-499. https://doi.org/10.20959/wjpps20169-7513
- 30. Koger B, Kirkby C. Dosimetric effects of polyethylene glycol surface coatings on gold nanoparticle radiosensitization. Phys Med Biol. 2017;92(8455). https://doi.org/10.1088/1361-6560/aa8e12
- 31. Zulkifli ZA, Razak KA, Rahman WNWA, Abidin SZ. Synthesis and Characterisation of Bismuth Oxide Nanoparticles using Hydrothermal Method: The Effect of Reactant Concentrations and application in radiotherapy. In: Journal of Physics: Conference Series. Vol 1082. IOP Publishing; 2018:1-7. https://doi.org/10.1088/1742-6596/1082/1/012103
- 32. Zulkifli ZA, Razak KA, Rahman WNWA. The effect of reaction temperature on the particle size of bismuth oxide nanoparticles synthesized via hydrothermal method. In: 3rd International Concerence on the Science and Engineering of Materials (ICoSEM 2017) AIP Conference Proceedings 1958. Vol 020007. American Institute of Physics; 2018:1-5. https://doi.org/10.1063/1.5034538
- 33. Sisin NNT, Mat NFC, Abdullah R, Rahman WN. Baicalein-rich Fraction as a Potential Radiosensitizer or Radioprotective for HDR Brachytherapy: A Preliminary Study. J Nucl Relat Technol. 2020;18(1):9-16
- 34. Mukherjee SG, O'Claonadh N, Casey A, Chambers G. Comparative in vitro cytotoxicity study of silver nanoparticle on two mammalian cell lines. Toxicol Vitr. 2012;26(2):238-251. https://doi.org/10.1016/j.tiv.2011.12.004
- 35. Swanepoel B, Nitulescu GM, Olaru OT, Venables L, van de Venter M. Anti-Cancer Activity of a 5-Aminopyrazole Derivative Lead Compound (BC-7) and Potential Synergistic Cytotoxicity with Cisplatin against Human Cervical Cancer Cells. Int J Mol Sci. 2019;20(22). https://doi.org/10.3390/ijms20225559
- 36. Moghaddam AB, Moniri M, Azizi S, et al. Eco-friendly formulated zinc oxide nanoparticles: Induction of cell cycle arrest and apoptosis in the MCF-7 cancer cell line. Genes (Basel). 2017;8(10):281. https://doi.org/10.3390/genes8100281
- 37. Cui L, Her S, Dunne M, et al. Significant Radiation Enhancement Effects by Gold Nanoparticles in Combination with Cisplatin in Triple Negative Breast Cancer Cells and Tumor Xenografts. Radiat Res. 2017;187(2):147-160. https://doi.org/10.1667/RR14578.1
- 38. Sisin NNT, Razak KA, Abidin SZ, et al. Synergetic influence of bismuth oxide nanoparticles, cisplatin and baicalein-rich fraction on reactive oxygen species generation and radiosensitization effects for clinical radiotherapy beams. Int J Nanomedicine. 2020; (15):7805-7823. https://doi.org/10.2147%2FIJN.S269214
- 39. Hamida RS, Albasher G, Bin-Meferij MM. Oxidative stress and apoptotic responses elicited by nostoc-synthesized silver nanoparticles against different cancer cell lines. Cancers (Basel). 2020;12(8):2099. https://doi.org/10.3390/cancers12082099
- 40. Alshatwi AA, Athinarayanan J, Periasamy VS, Prato M. Synthesis of copper-platinum nanoparticles induce apoptosis in THP-1 cells. IEEE-NANO 2015 - 15th Int Conf Nanotechnol. Published online 2015:1111-1113. https://doi.org/10.1109/NANO.2015.7388817
- 41. Li Z, Liu J, Hu Y, et al. Biocompatible PEGylated bismuth nanocrystals: "All-in-one" theranostic agent with triple-modal imaging and efficient in vivo photothermal ablation of tumors. Biomaterials. 2017;141:284-295. https://doi.org/10.1016/j.biomaterials.2017.06.033
- 42. Fam SY, Chee CF, Yong CY, Ho KL, Mariatulqabtiah AR, Tan WS. Stealth coating of Nanoparticles in drug-delivery systems. Nanomaterials. 2020;10(4):1-18. https://doi.org/10.3390/nano10040787
- 43. M. Christopher AMLS. Bio-inspired shielding strategies for NPs drug delivery. Physiol Behav. 2016;176(1):100-106. https://doi.org/10.1021/acs.molpharmaceut.8b00292.Bio
- 44. Abakumov MA, Semkina AS, Skorikov AS, et al. Toxicity of iron oxide nanoparticles: Size and coating effects. J Biochem Mol Toxicol. 2018;32(12):1-6. https://doi.org/10.1002/jbt.22225
- 45. Xue W, Liu Y, Zhang N, et al. Effects of core size and PEG coating layer of iron oxide nanoparticles on the distribution and metabolism in mice. Int J Nanomedicine. 2018;13:5719-5731. https://doi.org/10.2147/IJN.S165451
- 46. Zheng XJ, Chow JCL. Radiation dose enhancement in skin therapy with nanoparticle addition: A Monte Carlo study on kilovoltage photon and megavoltage electron beams. World J Radiol. 2017;9(2):63. https://doi.org/10.4329/wjr.v9.i2.63
- 47. Hwang C, Kim JM, Kim J. Influence of concentration, nanoparticle size, beam energy, and material on dose enhancement in radiation therapy. J Radiat Res. 2017;58(4):405-411. https://doi.org/10.1093/jrr/rrx009
- 48. Mehrnia SS, Hashemi B, Mowla SJ, Arbabi A. Enhancing the effect of 4 MeV electron beam using gold nanoparticles in breast cancer cells. Phys Medica. 2017;35:18-24. https://doi.org/10.1016/j.ejmp.2017.02.014
- 49. Guo T. Physical, chemical and biological enhancement in X-ray nanochemistry. Phys Chem Chem Phys. 2019;21(29):15917-15931. https://doi.org/10.1039/c9cp03024g
- 50. Ghorbani M, Tabatabaei ZS, Vejdani NA, Vosoughi H, Knaup C. Effect of Tissue Composition on Dose Distribution in Electron Beam Radiotherapy. J Biomed Phys Eng. 2000;5(1)
- 51. Sisin NNT, Rashid RA, Abdullah R, et al. GafchromicTM EBT3 Film Measurements of Dose Enhancement Effects by Metallic Nanoparticles for 192 Ir Brachytherapy, Proton, Photon and Electron Radiotherapy. Radiation. 2022;2:130-148
- 52. Dayem AA, Hossain MK, Lee S Bin, et al. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci. 2017;18(120):1-21. https://doi.org/10.3390/ijms18010120
- 53. Stewart CAC. An investigation into the tailoring of bismuth oxide nanoceramic with a biomedical application as a high Z radiation enhancer for cancer therapy. MSc. Published online 2014
- 54. Alan Mitteer R, Wang Y, Shah J, et al. Proton beam radiation induces DNA damage and cell apoptosis in glioma stem cells through reactive oxygen species. Sci Rep. 2015;5(13961):1-12. https://doi.org/10.1038/srep13961
- 55. Xue J, Yu C, Sheng W, et al. The Nrf2/GCH1/BH4 Axis Ameliorates Radiation-Induced Skin Injury by Modulating the ROS Cascade. J Invest Dermatol. 2017;137(10):2059-2068. https://doi.org/10.1016/j.jid.2017.05.019
- 56. Liu G, Li Y, Yang L, et al. Cytotoxicity study of polyethylene glycol derivatives. RSC Adv. 2017;7(30):18252-18259. https://doi.org/10.1039/c7ra00861a
- 57. Zhang T, Chen X, Xiao C, Zhuang X, Chen X. Synthesis of a phenylboronic ester-linked PEG-lipid conjugate for ROS-responsive drug delivery. Polym Chem. 2017;8(40):6209-6216. https://doi.org/10.1039/c7py00915a
- 58. Cui L. Optimization of Gold Nanoparticle Radiosensitizers for Cancer Therapy Optimization of Gold Nanoparticle Radiosensitizers. PhD. Published online 2016
- 59. Zhu C, Hu W, Wu H, Hu X. No evident dose-response relationship between cellular ROS level and its cytotoxicity - A paradoxical issue in ROS-based cancer therapy. Sci Rep. 2014;4(5029):1-10. https://doi.org/10.1038/srep05029
- 60. Choi C, Son A, Lee HS, Lee YJ, Park HC. Radiosensitization by Marine Sponge Agelas sp. Extracts in Hepatocellular Carcinoma Cells with Autophagy Induction. Sci Rep. 2018;8(6317):1-10. https://doi.org/10.1038/s41598-018-24745-w
- 61. Lipiec E, Bambery KR, Heraud P, et al. Synchrotron FTIR shows evidence of DNA damage and lipid accumulation in prostatę adenocarcinoma PC-3 cells following proton irradiation. J Mol Struct. 2014;1073:134-141. https://doi.org/10.1016/j.molstruc.2014.04.056
- 62. Chen Y, Li N, Wang J, et al. Enhancement of mitochondrial ROS accumulation and radiotherapeutic efficacy using a Gd-doped titania nanosensitizer. Theranostics. 2019;9(1):167-178. https://doi.org/10.7150/thno.28033
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f51080b-4081-4442-922c-878282a6bbba