Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article discusses the results of studies using the developed artificial neural networks in the analysis of the occurrence of the four main mechanisms destroying the selected forging tools subjected to five different surface treatment variants (nitrided layer, pad welded layer and three hybrid layers, i.e. AlCrTiSiN, Cr/CrN and Cr/AlCrTiN). Knowledge of the forging tool durability, needed in the process of artificial neural network training, was included in the set of training data (about 800 records) derived from long-term comprehensive research carried out under industrial conditions. Based on this set, neural networks with different architectures were developed and the results concerning the intensity of the occurrence of thermal-mechanical fatigue, abrasive wear, mechanical fatigue and plastic deformation were generated for each type of the applied treatment relative to the number of forgings, pressure, friction path and temperature.
Wydawca
Czasopismo
Rocznik
Tom
Strony
193--200
Opis fizyczny
Bibliogr. 13 poz., fot., rys.
Twórcy
autor
- Wrocław University of Science and Technology, 5 Łukasiewicza Str., 50-371 Wrocław, Poland
autor
- AGH University of Science and Technology, Department of Applied Computer Science and Modelling, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- Wrocław University of Science and Technology, 5 Łukasiewicza Str., 50-371 Wrocław, Poland
autor
- AGH University of Science and Technology, Department of Applied Computer Science and Modelling, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology, Department of Applied Computer Science and Modelling, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
- [1] A. Azari, M. Poursina, D. Poursina. Neural Computing & Applications 25 (3-4), 849-858 (2014).
- [2] T. Gangopadhyay, D. Kumar, I. Pratihar. Appl. Soft. Comput. 11 (1), 744-753 (2014).
- [3] Z. Gronostajski, M. Hawryluk, M. Kaszuba, M. Marciniak, A. Niechajowicz, S. Polak et al. The International Journal of Advanced Manufacturing Technology 82 (9), 1973-1991 (2015).
- [4] Z. Gronostajski, M. Hawryluk. Archives of Civil and Mechanical Engineering 8 (2), 39-57 (2008).
- [5] M. Hawryluk. Monograficzna seria wydawnicza Problemy Eksploatacji i Budowy Maszyn, ISBN 978-83-7789-410-1, Wyd. Naukowe ITE-PIB, Radom (2016).
- [6] T. Katayama, M. Akamatsu, Y. Tanaka. J Mater. Process. Technol. 155-156, 1583-1589 (2004).
- [7] Li M, Liu, X, Xiong A. Journal Of Materials Processing Technology 121 (1), 1-4 (2012).
- [8] D. Mazurkiewicz. Archives of Civil and Mechanical Engineering 15 (2), 412-418 (2015).
- [9] Ł. Rauch, A. Chmura, Z. Gronostajski, M. Pietrzyk, M. Zwierzchowski. Archives of Civil and Mechanical Engineering 16 (3), 437-447 (2016).
- [10] A. V. Subba Rao, D. K. Pratihar. Knowl-Based Syst. 20, 37-50 (2007).
- [11] A. Tompos, JL. Margitfalvi, E. Tfirst, K. He ́berger. Appl Catal Gen. 324, 90-93 (2007).
- [12] B. Mrzygłód, M. Hawryluk, Z. Gronostajski, A. Opaliński, M. D. Kaszuba, S. Polak, P. Widomski, J. Ziemba, M. Zwierzchowski. Archives of Civil and Mechanical Engineering 18 (4), 1079-1091 (2018).
- [13] M. Hawryluk, B. Mrzygłód. Journal of Mining and Metallurgy. Section B: Metallurgy 54 (3), 323-337 (2018).
Uwagi
EN
1. The work was realized as a part of fundamental research financed by the Ministry of Science and Higher Education, grant no. 16.16.110.663
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f4f946d-edb9-43f7-9f1a-0b361a74a105