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Abstrat. Let (G, +) be a uniquely 2-divisible Abelian group. In the present paper

we will onsider the solutions of funtional equation

[f(x + y)]
2
− [f(x − y)]

2
+f(2x+2y)+f(2x−2y) = f(2x)[f(2y)+2g(2y)], x, y ∈ G,

where f and g are omplex-valued funtions de�ned on G.

1. Introdution

We know many trigonometri identities. To us, important will be the follow-

ing:

[

sin

(

x + y

2

)]2

−

[

sin

(

x − y

2

)]2

= sin(x) sin(y), x, y ∈ R, (1)

sin(x + y) + sin(x − y) = 2 sin(x) cos(y), x, y ∈ R, (2)

sinh(x − y) = sinh(x) cosh(y) − cosh(x) sinh(y), x, y ∈ R. (3)

Let (G,+) be a uniquely 2-divisible Abelian group and f, g :G→C. Equation

(1) translates into the well known sine funtional equation [1, 8℄

[

f

(

x + y

2

)]2

−

[

f

(

x − y

2

)]2

= f(x)f(y) for all x, y ∈ G, (4)
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and (2) gives rise to the familiar osine funtional equation [1, 6, 7℄

f(x + y) + f(x − y) = 2f(x)g(y) for all x, y ∈ G, (5)

and (3) leads to the Azel-Dhombres funtional equation [1℄

f(x − y) = f(x)g(y) − g(x)f(y) for all x, y ∈ G. (6)

From now on, fo and fe stand for the odd and the even part of a funtion f .

Theorem 1 (Azél and Dhombres [1℄). Let (G,+) be a uniquely 2-divi-

sible Abelian group. Then f, g : G → C satisfy equation (6) if and only if

(i) f = 0 and g is arbitrary; or

(ii) there exists an additive funtion A : G → C and a onstant α ∈ C suh

that f(x) = A(x), g(x) = αA(x) + 1, x ∈ G; or

(iii) there exists an exponential funtion m : G → C and onstants β, γ ∈ C

suh that f(x) = βmo(x), g(x) = γmo(x) + me(x), x ∈ G.

From the system of equations

{

f(x + y) = f(x) + f(y),

f(xy) = f(x)f(y),

we get the Dhombres funtional equation (see [2℄)

f(x + y) + f(xy) = f(x) + f(y) + f(x)f(y)

for funtions f mapping a given ring into another one. A di�erent system of

the funtional equations has been studied by Ger [3, 4, 5℄. Here we onsider

the sum of equations (4) and (5).

2. Main results

We replae x by 2x and y by 2y in (4) and (5). Summing up these funtional

equations side by side, for all x, y ∈ G, we get

[f(x + y)]2−[f(x − y)]2+f(2x + 2y)+f(2x − 2y)=f(2x)[f(2y)+2g(2y)]. (7)

Remark 1. Put x=y=0 in (7), so that we have f(0)=0 ∨ f(0)=2 − 2g(0).

Lemma 1. Let (G,+) be a uniquely 2-divisible Abelian group and let funtions

f, g : G → C satisfy equation (7). In this ase

(i) if f = 0, then g is arbitrary;

(ii) if g = 0, then f = 0 or f = 2.
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Proof. Ad (ii). For g = 0, putting y = x in (7), we get

f(x) = [f(0)]2 − f(0) = f(0)[f(0) − 1] = γ, x ∈ G. (8)

From equation (7) we obtain

γ2 − γ2 + 2γ = γ2,

whene γ = 0 ∨ γ = 2. By (8), we onlude that f = 0 ∨ f = 2.

Lemma 2. Let (G,+) be a uniquely 2-divisible Abelian group and let nonzero

funtions f, g : G → C be funtions de�ned by

f(x) = aA(x) + f(0), g(x) = bA(x) + g(0), x ∈ G, (9)

with some additive funtion A : G → C and a, b ∈ C satisfy equation (7). In

this ase we have the following possibilities:

(i) If f(0) = 0, then f(x) = aA(x), g(x) = 1, x ∈ G.

(ii) If f(0) �= 0, then f(x) = f(0), g(x) = 1 − 1
2f(0), x ∈ G.

Proof. Applying (9) to (7), we have

[aA(x+ y)+ f(0)]2− [aA(x− y)+ f(0)]2 +aA(2x+2y)+2f(0)+aA(2x− 2y)

= [aA(2x) + f(0)][(a + 2b)A(2y) + f(0) + 2g(0)], x, y ∈ G.

From the properties of additive funtion A for all x, y ∈ G, we infer that

[2−f(0)−2g(0)][2aA(x)+f(0)]+2f(0)[a−2b]A(y)=8abA(x)A(y). (10)

Case 1. Assume that f(0) = 0. Then equation (10) has a form

aA(x)[1 − g(0) − 2bA(y)] = 0, x, y ∈ G. (11)

If a = 0∨A = 0∨ (a �= 0∧A �= 0∧ b �= 0), then we get f = 0, a ontradition.

Hene we have only one possibility (a �= 0 ∧ A �= 0 ∧ b = 0). Consequently,

equation (11) gives g(0) = 1. From (9) we obtain (i).

Case 2. Let f(0) �= 0. By Remark 1 and equation (10), we get the relation

A(y)[f(0)(a − 2b) − 4abA(x)] = 0, x, y ∈ G.

If A = 0, then (ii). Assume that A �= 0. From above we have

f(0)(a − 2b) = 4abA(x), x ∈ G.

Therefore (a = 0 ⇒ b = 0) ∨ (b = 0 ⇒ a = 0), the ase (ii). If a �= 0 ∧ b �= 0,
then A = 0, a ontradition.
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Now, we formulate some properties of the exponential funtion without a proof.

Lemma 3. Let (G,+) be a uniquely 2-divisible Abelian group. Then a nonzero

exponential funtion m : G → C has the following properties

(i) me(x + y) + me(x − y) = 2me(x)me(y), x, y ∈ G;

(ii) [mo(x + y)]2 − [mo(x − y)]2 = mo(2x)mo(2y), x, y ∈ G;

(iii) mo(x + y) + mo(x − y) = 2mo(x)me(y), x, y ∈ G;

(iv) mo(2x) = 2mo(x)me(x), x ∈ G;

(v) [me(x + y)]2 − [me(x − y)]2 = mo(2x)mo(2y), x, y ∈ G;

(vi) mo(x + y) − mo(x − y) = 2me(x)mo(y), x, y ∈ G.

Lemma 4. Let (G,+) be a uniquely 2-divisible Abelian group and let nonzero

funtions f, g : G → C be funtions de�ned by

f(x) = amo(x) + bme(x), g(x) = cmo(x) + dme(x), x ∈ G, (12)

with some exponential funtion m : G → C and a, b, c, d ∈ C satisfying equa-

tion (7). Then we have the following possibilities:

(i) f(x) = amo(x), g(x) = me(x), x ∈ G; or

(ii) f(x) = b �= 0, g(x) = 1 − 1
2b, x ∈ G; or

(iii) f(x) = bmo(x) + bme(x), g(x) = 1
2bmo(x) + (1 − 1

2b)me(x), x ∈ G; or

(iv) f(x) = −bmo(x) + bme(x), g(x) = −1
2bmo(x) + (1 − 1

2b)me(x), x ∈ G.

Proof. Inserting funtions (12) into equation (7), for all x, y ∈ G, we obtain

[amo(x + y) + bme(x + y)]2 − [amo(x − y) + bme(x − y)]2 + a[mo(2x + 2y)

+mo(2x − 2y)] + b[me(2x + 2y) + me(2x − 2y)]

= [amo(2x) + bme(2x)][(a + 2c)mo(2y) + (b + 2d)me(2y)].

From above and Lemma 3, we get

[b2 − 2ac]mo(x)mo(y) + b[a − 2c]me(x)mo(y)

+a[2 − b − 2d]mo(x)me(y) + b[2 − b − 2d]me(x)me(y) = 0, x, y ∈ G. (13)

Diretly from the de�nition (12), we see that f(0) = b and g(0) = d. Moreover,

from Remark 1 we infer that b = 0 or b = 2(1 − d).
Now we shall distinguish two ases regarding the value of funtion f at

zero.
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Case 1. Let f(0) = b = 0. Then, by (13), we onlude that

amo(x)[−cmo(y) + (1 − d)me(y)] = 0, x, y ∈ G.

If a = 0 or mo = 0, then also f = 0. Hene

−cmo(y) + (1 − d)me(y) = 0, y ∈ G. (14)

Putting y = 0 in (14) and using mo(0) = 0, we have d = 1. Jointly with (14),

for all y ∈ G, this implies that −cmo(y) = 0, whene c = 0, whih ends the

proof of (i).

Case 2. Assume that f(0)=b �= 0. Set b=2(1−d) in (13). Then, we get

mo(y)[(b2 − 2ac)mo(x) + b(a − 2c)me(x)] = 0, x, y ∈ G. (15)

Subase 2.1. Let mo = 0. By equation (12), we onlude that f = bme,

g = dme. Replaing y by −y in (7), we arrive at

[f(x−y)]2−[f(x+y)]2+f(2x−2y)+f(2x+2y)=f(2x)[f(2y)+2g(2y)]. (16)

Subtrating (7) and (16), we get

[f(x + y)]2 = [f(x − y)]2, x, y ∈ G.

Putting here y = x and replaing x by x
2 , we obtain f2 = b2. The ase f = −b

is impossible. In other words, we have (ii): f = b, me = 1, g = d = 2−b
2 =

1 − 1
2b.

Subase 2.2. Suppose mo �= 0. Then (15) yields

(b2 − 2ac)mo(x) + b(a − 2c)me(x) = 0, x ∈ G. (17)

Putting x = 0, we have a = 2c. From (17), for all x ∈ G, we get

(b2 − 4c2)mo(x) = 0, i.e. b2 = 4c2. If a = 2c ∧ b = 2c, then we have the

ase (iii). However, a = 2c ∧ b = −2c yields (iv).

Theorem 2. Let (G,+) be a uniquely 2-divisible Abelian group. Then fun-

tions f, g : G → C satisfy equation (7) if and only if

(i) f = 0 and g is arbitrary; or

(ii) f(x) = α �= 0, g(x) = 1 − 1
2α, x ∈ G; or

(iii) there exists an additive funtion A :G→C suh that f =A, g=1; or

(iv) there exists an exponential funtion m : G→C and some onstant β ∈ C

suh that f =βmo, g=me; or
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(v) there exists an exponential funtion m : G → C suh that f(x)=f(0)mo(x)

+ f(0)me(x), g(x) = f(0)
2 mo(x) +

(

1 −
f(0)

2

)

me(x), x ∈ G; or

(vi) there exists an exponential funtion m : G → C suh that f(x) =

−f(0)mo(x)+f(0)me(x), g(x) = −
f(0)
2 mo(x)+

(

1 −
f(0)

2

)

me(x), x ∈ G.

Proof. From Lemma 1 we obtain (i) and (ii) for α = 2. Assume that f �= 0
and g �= 0. Putting x = 0 in (7), we get

[f(y)]2 − [f(−y)]2 + f(2y) + f(−2y) = f(0)[f(2y) + 2g(2y)], y ∈ G.

Let 2C := f(0). Thus, from above

f(2y) + f(−2y) − 2C[f(2y) + 2g(2y)] = [f(−y)]2 − [f(y)]2, y ∈ G. (18)

Interhanging the roles of x and y in (7), we obtain

[f(y+x)]2−[f(y−x)]2+f(2y+2x)+f(2y−2x)

=f(2y)f(2x)+2f(2y)g(2x), x, y ∈ G.
(19)

Subtrating (7) and (19), we get

[f(y−x)]2−[f(x−y)]2+f(2x−2y)−f(2y−2x)

=2f(2x)g(2y)−2f(2y)g(2x), x, y ∈ G.
(20)

Applying (18) for y equal x − y, we reive

f(2x−2y)+f(−2x+2y)−2C[f(2x−2y)+2g(2x−2y)]

=[f(−x+y)]2−[f(x−y)]2, x, y ∈ G.
(21)

By (20) and (21), we get the relation

(1 − C)f(2x − 2y) − 2Cg(2x − 2y) = f(2x)g(2y) − f(2y)g(2x), x, y ∈ G.

Replaing x by x
2 and y by y

2 , we obtain

(1 − C)f(x − y) − 2Cg(x − y) = f(x)g(y) − f(y)g(x), x, y ∈ G. (22)

Case 1. Let f(0) = 0 ⇒ C = 0. Thus, from (22) we get

f(x − y) = f(x)g(y) − f(y)g(x), x, y ∈ G,
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By Theorem 1 (ii), we infer that f(x) = A(x), g(x) = αA(x) + 1 for some

additive funtion A and some onstant α. In view of Lemma 2 for a = 1,
b = α, f(0) = 0, g(0) = 1, we dedue that

f(x) = A(x), g(x) = 1, x ∈ G.

This is the ase (iii) of our theorem. By Theorem 1 (iii), we get

f(x) = βmo(x), g(x) = γmo(x) + me(x), x ∈ G.

For a = β, b = 0, c = γ, d = 1 in Lemma 4 (i) we have the ase (iv), i.e.

f(x) = βmo(x), g(x) = me(x), x ∈ G.

Case 2. Assume that f(0) �= 0. Then g(0) = 1 − C, and (22) gives

g(0)f(x − y) − f(0)g(x − y) = f(x)g(y) − f(y)g(x), x, y ∈ G. (23)

Subase 2.1. If g(0) = 0, then f(0) = 2. By (23), we infer that

g(x − y) = g(x)
f(y)

2
− g(y)

f(x)

2
, x, y ∈ G. (24)

Theorem 1 (ii) yields g(x) = A(x), f(x)
2 = αA(x)+1 for some additive funtion

A and some onstant α. Thus

f(x) = 2αA(x) + 2, g(x) = A(x), x ∈ G.

By Lemma 2 for a = 2α, b = 1, f(0) = 2, g(0) = 0, we get f = 2, g = 0. This
is the ase (ii). Theorem 1 (iii) leads us to

f(x) = 2γmo(x) + 2me(x), g(x) = βmo(x), x ∈ G.

From Lemma 4 (ii) for a = 2γ, b = 2, c = β, d = 0, we get (ii) of the theorem.

The ase (iii) for f(0) = 2 gives (v), and (iv) gives (vi).

Subase 2.2. Let f(0) �= 0 and g(0) �= 0. Thus, from (23) for

F (x) := g(0)f(x) − f(0)g(x), G(x) :=
g(x)

g(0)
, x ∈ G,

we onlude that

F (x − y) = F (x)G(y) − F (y)G(x), x, y ∈ G. (25)

Again, by Theorem 1 (ii), we obtain

g(x) = g(0)αA(x) + g(0), f(x) =
1 + f(0)g(0)α

g(0)
A(x) + f(0), x ∈ G.
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By Lemma 2 (ii) for a = 1+f(0)g(0)α
g(0) , b = g(0)α, we get (ii) of the theorem.

Further, Theorem 1 (iii) yields

F (x) := g(0)f(x) − f(0)g(x) = βmo(x), x ∈ G,

G(x) :=
g(x)

g(0)
= γmo(x) + me(x), x ∈ G,

or, equivalently,

g(x) = g(0)γmo(x) + g(0)me(x), x ∈ G,

f(x) =
β + γf(0)g(0)

g(0)
mo(x) + f(0)me(x), x ∈ G.

Now, using Lemma 4 for a = β+γf(0)g(0)
g(0) , b = f(0), c = γg(0), d = g(0),

the ase (ii) gives (ii) of our theorem, however (iii) yields (v), and (iv) gives

(vi).
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