Jan Dtugosz University in Czestochowa

Scientific Issues, Mathematics XVI, Czestochowa 2011

SOLUTIONS OF THE DHOMBRES-TYPE
TRIGONOMETRIC FUNCTIONAL EQUATION

Iwona Tyrala

Institute of Mathematics and Computer Science
Jan Dtugosz University in Czestochowa
al. Armii Krajowej 18/15, 42-200 Czestochowa, Poland
e-mail: i.tyrala@ajd.czest.pl

Abstract. Let (G, +) be a uniquely 2-divisible Abelian group. In the present paper
we will consider the solutions of functional equation

[f (@ +9))” = [f (@ — )"+ F e +2y) + f (20— 2y) = f(22)[f(29) +29(2y)], 2,y € G,
where f and g are complex-valued functions defined on G.

1. Introduction

We know many trigonometric identities. To us, important will be the follow-

ing:
[sin (xTerﬂQ - [sin (x 5 y>r —sin(z)sin(y), z,yeR, (1)

sin(z + y) + sin(z — y) = 2sin(z) cos(y), z,y € R, (2)

sinh(z — y) = sinh(z) cosh(y) — cosh(z) sinh(y), z,y € R. (3)

Let (G,+) be a uniquely 2-divisible Abelian group and f,g:G — C. Equation
(1) translates into the well known sine functional equation [1, 8|

()] [ (53] = s e swee
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and (2) gives rise to the familiar cosine functional equation [1, 6, 7|

fla+y)+ [z —y) = 2f(z)g(y) forall z,ycG, (5)
and (3) leads to the Aczel-Dhombres functional equation [1]
fle—y) = f(@)g(y) —g(x)f(y) forall z,yeG. (6)

From now on, f, and f. stand for the odd and the even part of a function f.

Theorem 1 (Aczél and Dhombres [1]). Let (G,+) be a uniquely 2-divi-

sible Abelian group. Then f,g: G — C satisfy equation (6) if and only if

(i) f =0 and g is arbitrary; or

(ii) there exists an additive function A : G — C and a constant o € C such
that f(z) = A(z), g(x) = acA(x) + 1,2 € G; or

(iii) there exists an exponential function m : G — C and constants 3,y € C
such that f(z) = Pmy(x), g(x) = ymy(x) + me(x), € G.

From the system of equations

{f<x +y) = fz) + f(y),
flzy) = f(z)f(y),

we get the Dhombres functional equation (see [2])

flx+y)+ flzy) = f(z) + f(y) + f(@) f(y)

for functions f mapping a given ring into another one. A different system of
the functional equations has been studied by Ger [3, 4, 5]. Here we consider
the sum of equations (4) and (5).

2. Main results

We replace x by 2z and y by 2y in (4) and (5). Summing up these functional
equations side by side, for all z,y € G, we get

[f (@ + )] =[f (@ = y)]*+ f (22 + 29)+ f (22 — 2y) = f(22)[f(2) +29(2y)). (7)
Remark 1. Put z=y=0 in (7), so that we have f(0)=0V f(0)=2 — 2¢(0).

Lemma 1. Let (G, +) be a uniquely 2-divisible Abelian group and let functions
fr9: G — C satisfy equation (7). In this case

(i) of f =0, then g is arbitrary;

(i) if g=0, then f =0 or f = 2.
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Proof. Ad (ii). For g = 0, putting y = z in (7), we get
f@) =[O = f(0) = F(O)[f(0) = 1] =7, z€G. (8)
From equation (7) we obtain
=+ 2y =77
whence v =0V vy = 2. By (8), we conclude that f =0V f = 2. O

Lemma 2. Let (G,+) be a uniquely 2-divisible Abelian group and let nonzero
functions f,g: G — C be functions defined by

f(x) = aA(z) + f(0), g(x) = bA(x) +9(0), =z €G, (9)

with some additive function A : G — C and a,b € C satisfy equation (7). In
this case we have the following possibilities:

(1) If f(0) =0, then f(zx) = aA(x), g(x) =1, z € G.
(i) I £(0) # 0, then f(z) = £(0), g(x) =1 Lf(0), x € G.

Proof. Applying (9) to (7), we have
[aA(z +y) + F(0)*~ [aA(z —y) + f(0)* + aA(2z + 2y) +2£(0) + aA(2z — 2y)
= [aA(22) + F(0)][(a + 20)A(2y) + f(0) +29(0)], =,y € G.
From the properties of additive function A for all z,y € G, we infer that
2= £(0)=29(0)][2aA(z)+ f(0)]+2/(0)[a—2b] A(y) =8abA(z) A(y).  (10)
Case 1. Assume that f(0) = 0. Then equation (10) has a form
aA(z)[1 —g(0) — 2bA(y)] =0, =z,y€q. (11)

fa=0VA=0V(a#0ANAF#0ADbF#DO0), then we get f = 0, a contradiction.
Hence we have only one possibility (a # 0 A A # 0 Ab = 0). Consequently,
equation (11) gives g(0) = 1. From (9) we obtain (i).

Case 2. Let f(0) # 0. By Remark 1 and equation (10), we get the relation
A(y)[f(0)(a — 2b) — 4abA(x)] =0, =,y € G.
If A =0, then (ii). Assume that A # 0. From above we have
f(0)(a —2b) = 4abA(x), =€ G.

Therefore (a =0=5b=0)V (b =0= a =0), the case (ii). f a #0A b # 0,
then A = 0, a contradiction. O
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Now, we formulate some properties of the exponential function without a proof.

Lemma 3. Let (G, +) be a uniquely 2-divisible Abelian group. Then a nonzero
exponential function m : G — C has the following properties

(1) me(z +y) + me(z —y) = 2me(z)me(y), z,y € G;

(i) [mo(z +y)I? = [mo(z — y)I* = mo(22)mo(2y), =,y € G;

(i) mo(z 4 y) + mo(z —y) = 2mo(x)me(y), z,y € G;

(iv) mo(2z) = 2mey(x)me(z), = € G;

(V) [me(z +y)* = [me(z — y)]? = mo(22)m,(2y), =,y € G;

(vi) mo(z +y) — mo(x — y) = 2me(x)mo(y), z,y € G.

Lemma 4. Let (G,+) be a uniquely 2-divisible Abelian group and let nonzero
functions f,g: G — C be functions defined by

f(x) = amy(z) + bme(z), g(x) = ecmo(z) + dme(z), x € G, (12)

with some exponential function m : G — C and a,b,c,d € C satisfying equa-
tion (7). Then we have the following possibilities:

(i) f(z) = amo(x), g(x) = me(x), v € G; or

(ii) f ():b#()’g(w):l—%b,xEG;or

(iii) f(z) = bmo(z) + bme(x), g(z) = Fbmy(z) + (1 — $b)me(z), 2 € G; or
(iv) f(z) = —bmo(z) + bme(z), g(x) = —2bmy(z) + (1 — $b)m.(z),2 € G.

Proof. Inserting functions (12) into equation (7), for all x,y € G, we obtain
[amo(@ +y) + bme(z +y)J* = [amo(z — ) + bme(w — y)I* + almo (22 + 2y)

+mo(2x — 2y)] + blme (22 + 2y) + me (22 — 2y)]
= [amo(22) + bme(22)][(a 4+ 2¢)m,(2y) + (b + 2d)m.(2y)].

From above and Lemma 3, we get

[b? — 2ac]mo(x)mo(y) + bla — 2¢)me(z)me(y)

+a[2 — b —2dJmy(x)me(y) + b[2 — b — 2d]me(x)me(y) =0, z,y € G. (13)

Directly from the definition (12), we see that f(0) = b and ¢g(0) = d. Moreover,
from Remark 1 we infer that b =0 or b = 2(1 — d).

Now we shall distinguish two cases regarding the value of function f at
zero.



Solutions of the Dhombres-type trigonometric functional equation 91

Case 1. Let f(0) = b =0. Then, by (13), we conclude that
amo(x)[—cmo(y) + (1 — d)me(y)] =0, z,y € G.
If a =0 or m, =0, then also f = 0. Hence
—emo(y) + (1 - dyme(y) =0, y € G. (14)

Putting y = 0 in (14) and using m,(0) = 0, we have d = 1. Jointly with (14),
for all y € G, this implies that —em,(y) = 0, whence ¢ = 0, which ends the
proof of (i).

Case 2. Assume that f(0)=b%# 0. Set b=2(1—d) in (13). Then, we get

mo(y)[(b* = 2ac)me(z) + b(a — 2¢)me(z)] = 0, z,y € G. (15)

Subcase 2.1. Let m, = 0. By equation (12), we conclude that f = bm,,
g = dme. Replacing y by —y in (7), we arrive at

[f(z—y)]? = [f (a+y)*+ f (22— 2y) + f (20+2y) = £ (22) [ (2y) +29(2y)]. (16)
Subtracting (7) and (16), we get

[flz+y)?=[flza—yP =zyel

Putting here y = x and replacing z by 3, we obtain f?2 =12 Thecase f = —b

is impossible. In other words, we have (ii): f =b, me =1, g =d = 274’ =
1— 3b.
2
Subcase 2.2. Suppose m, # 0. Then (15) yields
(b* — 2ac)my(z) + bla — 2¢)me(x) =0, z € G. (17)

Putting * = 0, we have a = 2¢. From (17), for all z € G, we get
(b2 — 4ct)my(x) = 0, i.e. b2 = 4c®. If a = 2¢ A b = 2¢, then we have the
case (iii). However, a = 2c¢ A b = —2¢ yields (iv). O

Theorem 2. Let (G,+) be a uniquely 2-divisible Abelian group. Then func-

tions f,g : G — C satisfy equation (7) if and only if

(i) f =0 and g is arbitrary; or

(ii) f(z) =a#0, g(x) =1—La, 2 € G; or

(iii) there exists an additive function A:G—C such that f=A,g=1; or

(iv) there exists an exponential functionm:G — C and some constant § € C
such that f =pPm,, g=me; or
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(v) there exists an exponential function m: G — C such that f(x)= f(0)m,(x)
+ FO)me(w), glw) = L2m(x) + (1= I ) me(2), @ € G; o
(vi) there exists an exponential function m : G — C such that f(x) =

— F(0)mo (@) + f(0)me (), g(z) = —@mo(:ﬂ)+(1 - %())) me(z), € G.

Proof. From Lemma 1 we obtain (i) and (ii) for &« = 2. Assume that f # 0
and g # 0. Putting x = 0 in (7), we get

[F ) = [f(=9))* + £(29) + f(—2y) = FO)[f(2y) +29(2y)], y€G.
Let 2C := f£(0). Thus, from above
F(2y) + f(=2y) = 2C[f(2y) +2929)] = [f(~9)* = [fW)]>, y€G. (18)
Interchanging the roles of z and y in (7), we obtain

[f(y+2)2=[f(y—2)*+ f (2y-+22)+ f (2y —2x)

(19)
=[(2y)f(22)+2f(2y)g(22),2,y € G.
Subtracting (7) and (19), we get
[fly—a)? = [f (e =)+ f(22—2y)— f(2y —22) 20
=2f(22)9(2y) -2/ (2y)g(22), 2,y € G.
Applying (18) for y equal z — y, we recive
F(22—2y)+ f(-22+2y) —2C[f (22— 2y) +29(22 — 2y)] o

=[f(z+y)P=[fz—y) 2,y € G.
By (20) and (21), we get the relation
(1-0C)f(2z —2y) —2Cy(2z — 2y) = f(2x)9(2y) — f(2y)9(22), x,y€G.
Replacing by £ and y by ¥, we obtain
(1=0O)f(z—y) —2Cg(x —y) = f(x)g(y) — fWg(x), z,yeCG. (22)
Case 1. Let f(0) = 0= C = 0. Thus, from (22) we get

flx—y) = f(x)gly) — fy)g(x), =z,y€q,
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By Theorem 1 (ii), we infer that f(z) = A(x),g(z) = aA(x) + 1 for some
additive function A and some constant «. In view of Lemma 2 for a = 1,
b=a, f(0) =0, g(0) =1, we deduce that

f(z)=A(x), g(z)=1, =z€d.

This is the case (iii) of our theorem. By Theorem 1 (iii), we get

F(@) = Bmo(@),  9(x) = ymo(z) + me(z), =€ G.
Fora=f, b=0, c=+, d=1in Lemma 4 (i) we have the case (iv), i.c.

F(@) = Bmo(e),  g() = me(z), z€GC.
Case 2. Assume that f(0) # 0. Then ¢g(0) =1 — C, and (22) gives
9(0)f(z —y) = f(O)g(z —y) = f(2)9(y) — f(y)9(x), =z,yeG.  (23)

Subcase 2.1. If g(0) = 0, then f(0) = 2. By (23), we infer that

x
gz —y) = g(w)@ - g(y)y, z,y €G. (24)
Theorem 1 (ii) yields g(z) = A(x), %ﬂ”) aA(x)+1 for some additive function

A and some constant «. Thus

flx) =2aA(x)+2, g(z)=A(x), ze€d.

By Lemma 2 for a = 2a, b =1, f(0) =2, g(0) =0, we get f =2, g =0. This
is the case (ii). Theorem 1 (iii) leads us to

f(x) =2ymy(x) + 2me(x), g(x) = Pmo(z), =€ G.

From Lemma 4 (ii) for a = 2, b =2,c = ,d = 0, we get (ii) of the theorem.
The case (iii) for f(0) = 2 gives (v), and (iv) gives (vi).
Subcase 2.2. Let f(0) # 0 and ¢(0) # 0. Thus, from (23) for

= xT) — x x ':M T
F(z) :=g(0)f(z) - f(0)g(z), G(z): Ok € G,
we conclude that
F(z—y) = F(z)G(y) - F(y)G(z), z,y€q. (25)

Again, by Theorem 1 (ii), we obtain

_ 1+ f(0)g(0)a

9(x) = g(0)aA(z) +9(0), f(x) 4(0)

A(z)+ f(0), zed.
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By Lemma 2 (ii) for a =

1+f72%9)(0)07 b = g(0)a, we get (ii) of the theorem.

Further, Theorem 1 (iii) yields

F(z) := g(0)f(z) = f(0)g(z) = Bmo(z), = €G,

or, equivalently,

g(x) = g(0)ymo(z) + g(0)me(x), z € G,

_ B+ £ (0)g(0)

mo(x) + f(o)me(x)’ r€G.

Now, using Lemma 4 for q = 2£/@90) 3 _ f(0), ¢ = vg(0), d = g(0),

9(0)
the case (ii) gives (ii) of our theorem, however (iii) yields (v), and (iv) gives
(vi). O
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