SOLUTIONS OF THE DHOMBRES-TYPE TRIGONOMETRIC FUNCTIONAL EQUATION

Iwona Tyrala

Institute of Mathematics and Computer Science Jan Długosz University in Częstochowa al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland e-mail: i.tyrala@ajd.czest.pl

Abstract. Let $(G,+)$ be a uniquely 2-divisible Abelian group. In the present paper we will onsider the solutions of fun
tional equation $[f(x+y)]^2 - [f(x-y)]^2 + f(2x+2y) + f(2x-2y) = f(2x)[f(2y) + 2g(2y)], x, y \in G,$ where f and g are complex-valued functions defined on G .

1. Introduction

We know many trigonometric identities. To us, important will be the following:

$$
\left[\sin\left(\frac{x+y}{2}\right)\right]^2 - \left[\sin\left(\frac{x-y}{2}\right)\right]^2 = \sin(x)\sin(y), \quad x, y \in \mathbb{R},\qquad(1)
$$

$$
\sin(x+y) + \sin(x-y) = 2\sin(x)\cos(y), \quad x, y \in \mathbb{R},\tag{2}
$$

$$
\sinh(x - y) = \sinh(x)\cosh(y) - \cosh(x)\sinh(y), \quad x, y \in \mathbb{R}.\tag{3}
$$

Let $(G, +)$ be a uniquely 2-divisible Abelian group and $f, g: G \to \mathbb{C}$. Equation (1) translates into the well known *sine functional equation* [1, 8]

$$
\left[f\left(\frac{x+y}{2}\right)\right]^2 - \left[f\left(\frac{x-y}{2}\right)\right]^2 = f(x)f(y) \quad \text{for all} \quad x, y \in G,\qquad(4)
$$

and (2) gives rise to the familiar *cosine functional equation* [1, 6, 7]

$$
f(x + y) + f(x - y) = 2f(x)g(y) \text{ for all } x, y \in G,
$$
 (5)

and (3) leads to the *Aczel-Dhombres functional equation* [1]

$$
f(x - y) = f(x)g(y) - g(x)f(y) \quad \text{for all} \quad x, y \in G. \tag{6}
$$

From now on, f_o and f_e stand for the odd and the even part of a function f.

Theorem 1 (Aczél and Dhombres [1]). Let $(G,+)$ be a uniquely 2-divisible Abelian group. Then $f,g:G\to\mathbb{C}$ satisfy equation (6) if and only if

- (i) $f = 0$ and g is arbitrary; or
- (ii) there exists an additive function $A: G \to \mathbb{C}$ and a constant $\alpha \in \mathbb{C}$ such that $f(x) = A(x)$, $g(x) = \alpha A(x) + 1$, $x \in G$; or
- (iii) there exists an exponential function $m: G \to \mathbb{C}$ and constants $\beta, \gamma \in \mathbb{C}$ such that $f(x) = \beta m_o(x)$, $g(x) = \gamma m_o(x) + m_e(x)$, $x \in G$.

From the system of equations

$$
\begin{cases} f(x+y) = f(x) + f(y), \\ f(xy) = f(x)f(y), \end{cases}
$$

we get the Dhombres functional equation (see $[2]$)

$$
f(x + y) + f(xy) = f(x) + f(y) + f(x)f(y)
$$

for functions f mapping a given ring into another one. A different system of the functional equations has been studied by Ger $[3, 4, 5]$. Here we consider the sum of equations (4) and (5).

2. Main results

We replace x by $2x$ and y by $2y$ in (4) and (5). Summing up these functional equations side by side, for all $x, y \in G$, we get

$$
[f(x+y)]^{2} - [f(x-y)]^{2} + f(2x+2y) + f(2x-2y) = f(2x)[f(2y) + 2g(2y)].
$$
 (7)

Remark 1. Put $x=y=0$ in (7), so that we have $f(0)=0 \vee f(0)=2-2q(0)$.

Lemma 1. Let $(G, +)$ be a uniquely 2-divisible Abelian group and let functions $f,g: G \to \mathbb{C}$ satisfy equation (7). In this case

- (i) if $f = 0$, then g is arbitrary;
- (ii) if $q = 0$, then $f = 0$ or $f = 2$.

Proof. Ad (ii). For $g = 0$, putting $y = x$ in (7), we get

$$
f(x) = [f(0)]^2 - f(0) = f(0)[f(0) - 1] = \gamma, \quad x \in G.
$$
 (8)

From equation (7) we obtain

$$
\gamma^2 - \gamma^2 + 2\gamma = \gamma^2,
$$

whence $\gamma = 0 \vee \gamma = 2$. By (8), we conclude that $f = 0 \vee f = 2$. \Box

Lemma 2. Let $(G, +)$ be a uniquely 2-divisible Abelian group and let nonzero functions $f, g: G \to \mathbb{C}$ be functions defined by

$$
f(x) = aA(x) + f(0), \ g(x) = bA(x) + g(0), \quad x \in G,
$$
 (9)

with some additive function $A: G \to \mathbb{C}$ and $a, b \in \mathbb{C}$ satisfy equation (7). In this case we have the following possibilities:

(i) If $f(0) = 0$, then $f(x) = aA(x)$, $g(x) = 1$, $x \in G$.

(ii) If $f(0) \neq 0$, then $f(x) = f(0)$, $g(x) = 1 - \frac{1}{2}$ $\frac{1}{2}f(0), x \in G.$

Proof. Applying (9) to (7) , we have

$$
[aA(x + y) + f(0)]^2 - [aA(x - y) + f(0)]^2 + aA(2x + 2y) + 2f(0) + aA(2x - 2y)
$$

=
$$
[aA(2x) + f(0)][(a + 2b)A(2y) + f(0) + 2g(0)], x, y \in G.
$$

From the properties of additive function A for all $x, y \in G$, we infer that

$$
[2 - f(0) - 2g(0)][2aA(x) + f(0)] + 2f(0)[a - 2b]A(y) = 8abA(x)A(y).
$$
 (10)

Case 1. Assume that $f(0) = 0$. Then equation (10) has a form

$$
aA(x)[1 - g(0) - 2bA(y)] = 0, \quad x, y \in G.
$$
 (11)

If $a = 0 \vee A = 0 \vee (a \neq 0 \wedge A \neq 0 \wedge b \neq 0)$, then we get $f = 0$, a contradiction. Hence we have only one possibility $(a \neq 0 \land A \neq 0 \land b = 0)$. Consequently, equation (11) gives $g(0) = 1$. From (9) we obtain (i).

Case 2. Let $f(0) \neq 0$. By Remark 1 and equation (10), we get the relation

$$
A(y)[f(0)(a-2b) - 4abA(x)] = 0, \quad x, y \in G.
$$

If $A = 0$, then (ii). Assume that $A \neq 0$. From above we have

$$
f(0)(a-2b) = 4abA(x), \quad x \in G.
$$

Therefore $(a = 0 \Rightarrow b = 0) \vee (b = 0 \Rightarrow a = 0)$, the case (ii). If $a \neq 0 \wedge b \neq 0$, then $A = 0$, a contradiction. \Box Now, we formulate some properties of the exponential fun
tion without ^a proof.

Lemma 3. Let $(G, +)$ be a uniquely 2-divisible Abelian group. Then a nonzero exponential function $m: G \to \mathbb{C}$ has the following properties (i) $m_e(x + y) + m_e(x - y) = 2m_e(x)m_e(y), \quad x, y \in G;$ (ii) $[m_o(x+y)]^2 - [m_o(x-y)]^2 = m_o(2x)m_o(2y), \quad x, y \in G;$ (iii) $m_o(x + y) + m_o(x - y) = 2m_o(x)m_e(y), \quad x, y \in G;$ (iv) $m_o(2x)=2m_o(x)m_e(x)$, $x \in G$; (v) $[m_e(x+y)]^2 - [m_e(x-y)]^2 = m_o(2x)m_o(2y), \quad x, y \in G;$ (vi) $m_o(x + y) - m_o(x - y) = 2m_e(x)m_o(y), \quad x, y \in G.$

Lemma 4. Let $(G, +)$ be a uniquely 2-divisible Abelian group and let nonzero functions $f,g:G\to\mathbb{C}$ be functions defined by

$$
f(x) = am_o(x) + bm_e(x), g(x) = cm_o(x) + dm_e(x), x \in G,
$$
 (12)

with some exponential function $m: G \to \mathbb{C}$ and $a, b, c, d \in \mathbb{C}$ satisfying equation (7) . Then we have the following possibilities:

(i)
$$
f(x) = am_o(x)
$$
, $g(x) = m_e(x)$, $x \in G$; or
\n(ii) $f(x) = b \neq 0$, $g(x) = 1 - \frac{1}{2}b$, $x \in G$; or
\n(iii) $f(x) = bm_o(x) + bm_e(x)$, $g(x) = \frac{1}{2}bm_o(x) + (1 - \frac{1}{2}b)m_e(x)$, $x \in G$; or
\n(iv) $f(x) = -bm_o(x) + bm_e(x)$, $g(x) = -\frac{1}{2}bm_o(x) + (1 - \frac{1}{2}b)m_e(x)$, $x \in G$.

Proof. Inserting functions (12) into equation (7), for all $x, y \in G$, we obtain

$$
[am_o(x + y) + bm_e(x + y)]^2 - [am_o(x - y) + bm_e(x - y)]^2 + a[m_o(2x + 2y) + m_o(2x - 2y)] + b[m_e(2x + 2y) + m_e(2x - 2y)]
$$

=
$$
[am_o(2x) + bm_e(2x)][(a + 2c)m_o(2y) + (b + 2d)m_e(2y)].
$$

From above and Lemma 3, we get

$$
[b^{2} - 2ac]m_{o}(x)m_{o}(y) + b[a - 2c]m_{e}(x)m_{o}(y)
$$

$$
+a[2-b-2d]m_o(x)m_e(y)+b[2-b-2d]m_e(x)m_e(y)=0, x, y \in G.
$$
 (13)

Directly from the definition (12), we see that $f(0) = b$ and $g(0) = d$. Moreover, from Remark 1 we infer that $b = 0$ or $b = 2(1 - d)$.

Now we shall distinguish two cases regarding the value of function f at zero.

Case 1. Let $f(0) = b = 0$. Then, by (13), we conclude that

$$
am_o(x)[-cm_o(y) + (1-d)m_e(y)] = 0, x, y \in G.
$$

If $a = 0$ or $m_o = 0$, then also $f = 0$. Hence

$$
-cm_o(y) + (1 - d)m_e(y) = 0, \ y \in G.
$$
 (14)

Putting $y = 0$ in (14) and using $m_o(0) = 0$, we have $d = 1$. Jointly with (14), for all $y \in G$, this implies that $-cm_o(y)=0$, whence $c=0$, which ends the proof of (i).

Case 2. Assume that $f(0)=b\neq 0$. Set $b=2(1-d)$ in (13). Then, we get

$$
m_o(y)[(b^2 - 2ac)m_o(x) + b(a - 2c)m_e(x)] = 0, \ x, y \in G.
$$
 (15)

Subcase 2.1. Let $m_o = 0$. By equation (12), we conclude that $f = bm_e$, $g = dm_e$. Replacing y by $-y$ in (7), we arrive at

$$
[f(x-y)]^{2} - [f(x+y)]^{2} + f(2x-2y) + f(2x+2y) = f(2x)[f(2y) + 2g(2y)]. \tag{16}
$$

Subtra
ting (7) and (16), we get

$$
[f(x + y)]^2 = [f(x - y)]^2, \quad x, y \in G.
$$

Putting here $y = x$ and replacing x by $\frac{x}{2}$ $\frac{x}{2}$, we obtain $f^2 = b^2$. The case $f = -b$ is impossible. In other words, we have (ii): $f = b$, $m_e = 1$, $g = d = \frac{2-b}{2}$ $1-\frac{1}{2}$ $rac{1}{2}b.$

Subcase 2.2. Suppose $m_o \neq 0$. Then (15) yields

$$
(b2 - 2ac)mo(x) + b(a - 2c)me(x) = 0, \quad x \in G.
$$
 (17)

Putting $x = 0$, we have $a = 2c$. From (17), for all $x \in G$, we get $(b^2 - 4c^2)m_o(x) = 0$, i.e. $b^2 = 4c^2$. If $a = 2c \wedge b = 2c$, then we have the case (iii). However, $a = 2c \wedge b = -2c$ yields (iv). \Box

Theorem 2. Let $(G,+)$ be a uniquely 2-divisible Abelian group. Then functions $f,g:G\to\mathbb{C}$ satisfy equation (7) if and only if

(i) $f = 0$ and q is arbitrary; or

(ii) $f(x) = \alpha \neq 0, g(x) = 1 - \frac{1}{2}$ $\frac{1}{2}\alpha$, $x \in G$; or

(iii) there exists an additive function $A:G\to\mathbb{C}$ such that $f=A,g=1$; or

(iv) there exists an exponential function $m: G \to \mathbb{C}$ and some constant $\beta \in \mathbb{C}$ such that $f = \beta m_o$, $g = m_e$; or

(v) there exists an exponential function
$$
m: G \to \mathbb{C}
$$
 such that $f(x) = f(0)m_o(x) + f(0)m_e(x)$, $g(x) = \frac{f(0)}{2}m_o(x) + \left(1 - \frac{f(0)}{2}\right)m_e(x)$, $x \in G$; or

(vi) there exists an exponential function
$$
m: G \to \mathbb{C}
$$
 such that $f(x) = -f(0)m_o(x) + f(0)m_e(x), g(x) = -\frac{f(0)}{2}m_o(x) + \left(1 - \frac{f(0)}{2}\right)m_e(x), x \in G$.

Proof. From Lemma 1 we obtain (i) and (ii) for $\alpha = 2$. Assume that $f \neq 0$ and $g \neq 0$. Putting $x = 0$ in (7), we get

$$
[f(y)]^2 - [f(-y)]^2 + f(2y) + f(-2y) = f(0)[f(2y) + 2g(2y)], \quad y \in G.
$$

Let $2C := f(0)$. Thus, from above

$$
f(2y) + f(-2y) - 2C[f(2y) + 2g(2y)] = [f(-y)]^2 - [f(y)]^2, \quad y \in G. \quad (18)
$$

Interchanging the roles of x and y in (7) , we obtain

$$
[f(y+x)]^{2} - [f(y-x)]^{2} + f(2y+2x) + f(2y-2x)
$$

= f(2y)f(2x) + 2f(2y)g(2x), x, y \in G. (19)

Subtra
ting (7) and (19), we get

$$
[f(y-x)]^{2} - [f(x-y)]^{2} + f(2x-2y) - f(2y-2x)
$$

= $2f(2x)g(2y) - 2f(2y)g(2x), x, y \in G.$ (20)

Applying (18) for y equal $x - y$, we recive

$$
f(2x-2y)+f(-2x+2y)-2C[f(2x-2y)+2g(2x-2y)]
$$

=
$$
[f(-x+y)]^2-[f(x-y)]^2, x, y \in G.
$$
 (21)

By (20) and (21), we get the relation

$$
(1-C)f(2x-2y) - 2Cg(2x-2y) = f(2x)g(2y) - f(2y)g(2x), \quad x, y \in G.
$$

Replacing x by $\frac{x}{2}$ and y by $\frac{y}{2}$ $\overline{2}$, we obtain

$$
(1 - C)f(x - y) - 2Cg(x - y) = f(x)g(y) - f(y)g(x), \quad x, y \in G.
$$
 (22)

Case 1. Let $f(0) = 0 \Rightarrow C = 0$. Thus, from (22) we get

$$
f(x - y) = f(x)g(y) - f(y)g(x), \quad x, y \in G,
$$

By Theorem 1 (ii), we infer that $f(x) = A(x), g(x) = \alpha A(x) + 1$ for some additive function A and some constant α . In view of Lemma 2 for $a = 1$, $b = \alpha, f(0) = 0, g(0) = 1$, we deduce that

$$
f(x) = A(x), \quad g(x) = 1, \quad x \in G.
$$

This is the case (iii) of our theorem. By Theorem 1 (iii), we get

$$
f(x) = \beta m_o(x), \quad g(x) = \gamma m_o(x) + m_e(x), \quad x \in G.
$$

For $a = \beta$, $b = 0$, $c = \gamma$, $d = 1$ in Lemma 4 (i) we have the case (iv), i.e.

$$
f(x) = \beta m_o(x), \quad g(x) = m_e(x), \quad x \in G.
$$

Case 2. Assume that $f(0) \neq 0$. Then $g(0) = 1 - C$, and (22) gives

$$
g(0)f(x - y) - f(0)g(x - y) = f(x)g(y) - f(y)g(x), \quad x, y \in G.
$$
 (23)

Subcase 2.1. If $g(0) = 0$, then $f(0) = 2$. By (23), we infer that

$$
g(x - y) = g(x)\frac{f(y)}{2} - g(y)\frac{f(x)}{2}, \quad x, y \in G.
$$
 (24)

Theorem 1 (ii) yields $g(x) = A(x), \frac{f(x)}{2} = \alpha A(x) + 1$ for some additive function A and some constant α . Thus

$$
f(x) = 2\alpha A(x) + 2, \quad g(x) = A(x), \quad x \in G.
$$

By Lemma 2 for $a = 2\alpha$, $b = 1$, $f(0) = 2$, $g(0) = 0$, we get $f = 2$, $g = 0$. This is the ase (ii). Theorem 1 (iii) leads us to

$$
f(x) = 2\gamma m_o(x) + 2m_e(x), \quad g(x) = \beta m_o(x), \quad x \in G.
$$

From Lemma 4 (ii) for $a = 2\gamma$, $b = 2$, $c = \beta$, $d = 0$, we get (ii) of the theorem. The case (iii) for $f(0) = 2$ gives (v), and (iv) gives (vi). **Subcase 2.2.** Let $f(0) \neq 0$ and $g(0) \neq 0$. Thus, from (23) for

$$
F(x) := g(0)f(x) - f(0)g(x), \quad G(x) := \frac{g(x)}{g(0)}, \quad x \in G,
$$

we on
lude that

$$
F(x - y) = F(x)G(y) - F(y)G(x), \quad x, y \in G.
$$
 (25)

Again, by Theorem 1 (ii), we obtain

$$
g(x) = g(0)\alpha A(x) + g(0), \quad f(x) = \frac{1 + f(0)g(0)\alpha}{g(0)}A(x) + f(0), \quad x \in G.
$$

By Lemma 2 (ii) for $a = \frac{1+f(0)g(0)\alpha}{g(0)}$, $b = g(0)\alpha$, we get (ii) of the theorem. Further, Theorem 1 (iii) yields

$$
F(x) := g(0) f(x) - f(0) g(x) = \beta m_o(x), \quad x \in G,
$$

$$
G(x) := \frac{g(x)}{g(0)} = \gamma m_o(x) + m_e(x), \quad x \in G,
$$

or, equivalently,

$$
g(x) = g(0)\gamma m_o(x) + g(0)m_e(x), \quad x \in G,
$$

$$
f(x) = \frac{\beta + \gamma f(0)g(0)}{g(0)}m_o(x) + f(0)m_e(x), \quad x \in G.
$$

Now, using Lemma 4 for $a = \frac{\beta + \gamma f(0)g(0)}{g(0)}$, $b = f(0)$, $c = \gamma g(0)$, $d = g(0)$, the case (ii) gives (ii) of our theorem, however (iii) yields (v), and (iv) gives (vi) . \Box

Referen
es

- [1] J. Aczél, J. Dhombres. Functional Equations in Several Variables. Cambridge University Press, Cambridge 1989.
- [2] J. Dhombres. Relations de dépendance entre les équations fonctionnelles de Cauchy. Aequat. Math., 35, 186-212, 1988.
- [3] R. Ger. On an equation of ring homomorphisms. Publ. Math. Debrecen, 52, 397417, 1998.
- [4] R. Ger. Ring homomorphisms equation revisited. Rocznik Nauk.-Dydakt. *Prace Mat.*, $17, 101-115, 2000$.
- [5] R. Ger. Additivity and exponentiality are alien to each other. Aequat. $Math., 80, 111-118, 2010.$
- [6] Pl. Kannappan. The functional equations $f(xy) + f(xy)^{-1} = 2f(x)f(y)$ for groups. Proc. Amer. Math. Soc., 19, 69-74, 1968.
- [7] I. Tyrala. A characterization of the sine function by functional inequalities. Mathematical Inequalities \mathcal{B} Applications, 14, 13-33, 2011.
- [8] W.H. Wilson. On certain related functional equations. Bull. Amer. Math. Soc., 26, 300-312, 1919.