PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the ITSG-GRACE daily models in the determination of polar motion excitation function

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main aim of this study is to evaluate the usefulness of Institute of Geodesy at Graz University of Technology (ITSG) daily gravity field models in the determination of hydrological angular momentum (HAM) at nonseasonal time scales. We compared the equatorial components (χ1 and χ2) of HAM calculated with the ITSG daily gravity field models (ITSG-Gravity Recovery and Climate Experiment [ITSG-GRACE] 2016 and ITSG-GRACE 2018) with HAM and sea-level angular momentum (SLAM) from hydrological land surface discharge model (LSDM) and the hydrological signal in the polar motion excitation (known as geodetic residuals [GAO]). Data from ITSG have a daily temporal resolution and allow us to determine oscillations with higher frequencies than the more commonly used monthly data. We limited our study to the period between 2004 and 2011 because of the gaps in GRACE observations before and after this period. We evaluated HAM obtained from ITSG GRACE models in spectral and time domains and determined the amplitude spectra of the analyzed series in the spectral range from 2 to 120 days. Our analyses confirm the existence of a sub-monthly signal in the HAM series determined from ITSG daily data. We observed a similar signal in LSDM-based HAM, but with notably weaker amplitudes. We also observed common peaks around 14 days in the amplitude spectra for the GAO- and ITSG-based series, which may be related to the Earth’s tides. ITSG daily gravity field models can be useful to determine the equatorial components of HAM at nonseasonal time scales.
Rocznik
Strony
105--121
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Centrum Badań Kosmicznych Polskiej Akademii Nauk, Warsaw, Poland
  • Centrum Badań Kosmicznych Polskiej Akademii Nauk, Warsaw, Poland
  • Centrum Badań Kosmicznych Polskiej Akademii Nauk, Warsaw, Poland
autor
  • Centrum Badań Kosmicznych Polskiej Akademii Nauk, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
Bibliografia
  • Bizouard, C. (2020). Geophysical Modelling of the Polar Motion. In Geophysical Modelling of the Polar Motion. https://doi.org/10.1515/9783110298093.
  • Brzeziński, A. (1992). Polar motion excitation by variations of the effective angular momentum function: considerations concerning deconvolution problem. Manuscr. Geod., 17(1), 3-20.
  • Brzeziński, A., Nastula, J., & Kołaczek, B. (2009). Seasonal excitation of polar motion estimated from recent geophysical models and observations. Journal of Geodynamics, 48(3-5), 235-240. https://doi.org/10.1016/J.JOG.2009.09.021.
  • Chen, J., Wilson, C., Chao, B., Shum, C. K., & Tapley, B. (2000). Hydrologic and oceanic excitations to polar motion and length-of-day variation. Geophysical Journal International, 141, 149-156. https://doi.org/10.1046/j.1365-246X.2000.00069.x.
  • Chen, J. L., & Wilson, C. R. (2005). Hydrological excitations of polar motion, 1993-2002. Geophysical Journal International, 160(3), 833-839. https://doi.org/10.1111/j.1365-246X.2005.02522.x.
  • Chen, J. L., Wilson, C. R., & Zhou, Y. H. (2012). Seasonal excitation of polar motion. Journal of Geodynamics, 62, 8-15. https://doi.org/10.1016/J.JOG.2011.12.002.
  • Dill, R. (2008). Hydrological model LSDM for operational Earth rotation and gravity field variations. Scientific Technical Report. https://doi.org/11.2312/GFZ.b103-08095.
  • Dobslaw, H., Dill, R., Grötzsch, A., Brzeziński, A., & Thomas, M. (2010). Seasonal polar motion excitation from numerical models of atmosphere, ocean, and continental hydrosphere. Journal of Geophysical Research: Solid Earth, 115(B10). https://doi.org/https://doi.org/10.1029/2009JB007127.
  • Dobslaw, H., Flechtner, F., Bergmann-Wolf, I., Dahle, C., Dill, R., Esselborn, S., Sasgen, I., & Thomas, M. (2013). Simulating high-frequency atmosphere-ocean mass variability for dealiasing of satellite gravity observations: AOD1B RL05. Journal of Geophysical Research: Oceans, 118(7), 3704-3711. https://doi.org/https://doi.org/10.1002/jgrc.20271.
  • Dobslaw, H., Bergmann-Wolf, I., Dill, R., Poropat, L., Flechtner, F. (2017a) Product description document for AOD1B release 06. Technical report GRACE, 327-750. Available online: Ftp://isdcftp.gfz-potsdam.de/grace/DOCUMENTS/Level1/GRACE_AOD1B_Product_Description_Document_for_RL06.pdf (accessed on 24.05.2023).
  • Dobslaw, H., Bergmann-Wolf, I., Dill, R., Poropat, L., Thomas, M., Dahle, C., Esselborn, S., König, R., & Flechtner, F. (2017b). A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06. Geophysical Journal International, 211, 263-269. https://doi.org/10.1093/GJI/GGX302.
  • Dobslaw, H., & Dill, R. (2018). Predicting Earth orientation changes from global forecasts of atmosphere-hydrosphere dynamics. Advances in Space Research, 61(4), 1047-1054. https://doi.org/https://doi.org/10.1016/j.asr.2017.11.044.
  • Göttl, F., Schmidt, M., & Seitz, F. (2018). Mass-related excitation of polar motion: an assessment of the new RL06 GRACE gravity field models. Earth, Planets and Space, 70(1), 195. https://doi.org/10.1186/s40623-018-0968-4.
  • Gross, R. (2015). Theory of Earth Rotation Variations. https://doi.org/10.1007/1345_2015_13.
  • Jin, S., Chambers, D. P., & Tapley, B. D. (2010). Hydrological and oceanic effects on polar motion from GRACE and models. Journal of Geophysical Research: Solid Earth, 115(B2). https://doi.org/10.1029/2009JB006635.
  • Jungclaus, J. H., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei, D., Mikolajewicz, U., Notz, D., & von Storch, J. S. (2013). Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model. Journal of Advances in Modeling Earth Systems, 5(2), 422-446. https://doi.org/https://doi.org/10.1002/jame.20023.
  • Kurtenbach, E., Eicker, A., Mayer-Gürr, T., Holschneider, M., Hayn, M., Fuhrmann, M., & Kusche, J. (2012). Improved daily GRACE gravity field solutions using a Kalman smoother. Journal of Geodynamics, 59-60, 39-48. https://doi.org/10.1016/J.JOG.2012.02.006.
  • Lambeck, K. (1980). The earth’s variable rotation: geophysical causes and consequences. The Earth’s Variable Rotation: Geophysical Causes and Consequences. https://doi.org/10.1016/0031-9201(81)90054-6.
  • Mayer-Gürr, T., Behzadpour, S., Ellmer, M., Kvas, A., Klinger, B., Zehentner, N. (2016). ITSG-Grace2016-Monthly and Daily Gravity Field Solutions from GRACE. GFZ Data Services. Available online: http://dataservices.gfzpotsdam.de/icgem/showshort.php?id=escidoc:1697893.
  • Mayer-Gürr, T., Behzadpour, S., Ellmer, M., Kvas, A., Klinger, B., Strasser, S., Zehentner, N. (2018). ITSG-Grace2018-Monthly, Daily and Static Gravity Field Solutions from GRACE. GFZ Data Services. Available online: http://dataservices.gfzpotsdam.de/icgem/showshort.php?id=escidoc:3600910.
  • Meyrath, T., & van Dam, T. (2016). A comparison of interannual hydrological polar motion excitation from GRACE and geodetic observations. Journal of Geodynamics, 99. https://doi.org/10.1016/j.jog.2016.03.011.
  • Munk, W. H., & MacDonald, G. J. F. (1960). The rotation of the earth; a geophysical discussion. Cambridge [Eng.] University Press.
  • Nastula, J., Wińska, M., Śliwińska, J., & Salstein, D. (2019). Hydrological signals in polar motion excitation - Evidence after fifteen years of the GRACE mission. Journal of Geodynamics, 124, 119-132. https://doi.org/10.1016/J.JOG.2019.01.014.
  • Seoane, L., Nastula, J., Bizouard, C., & Gambis, D. (2011). Hydrological Excitation of Polar Motion Derived from GRACE Gravity Field Solutions. International Journal of Geophysics, 2011, 174396. https://doi.org/10.1155/2011/174396.
  • Sidorenkov, N. (2009). The Interaction Between Earth’s Rotation and Geophysical Processes. The Interaction Between Earth’s Rotation and Geophysical Processes by Nikolay S. Sidorenkov. Wiley, 2009. ISBN: 978-3-527-40875-7. https://doi.org/10.1002/9783527627721.
  • Śliwińska, J., Nastula, J., Dobslaw, H., & Dill, R. (2020). Evaluating Gravimetric Polar Motion Excitation Estimates from the RL06 GRACE Monthly-Mean Gravity Field Models. Remote Sensing, 12(6). https://doi.org/10.3390/rs12060930.
  • Śliwińska, J., Winska, M., & Nastula, J. (2022). Exploiting the Combined GRACE/GRACEFO Solutions to Determine Gravimetric Excitations of Polar Motion. Remote Sensing, 14, 6292. https://doi.org/10.3390/rs14246292.
  • Tapley, B. D., Bettadpur, S., Watkins, M., & Reigber, C. (2004). The gravity recovery and climate experiment: Mission overview and early results. Geophysical Research Letters, 31(9). https://doi.org/10.1029/2004GL019920.
  • Winska, M., Nastula, J., & Salstein, D. (2017). Hydrological excitation of polar motion by different variables from the GLDAS models. Journal of Geodesy, 91(12), 1461-1473. https://doi.org/10.1007/s00190-017-1036-8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f4ecbc5-93ae-4898-8c13-c4046562e14e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.