PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fabrication and characterisation of the PiN Ge photodiode with poly-crystalline Si:P as n-type region

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Quantum Structure Infrared Photodetectors - QSIP : International Conference 2020/2022 (11 ; 2022 ; Kraków, Poland)
Języki publikacji
EN
Abstrakty
EN
Germanium (Ge) PiN photodetectors are fabricated and electro-optically characterised. Unintentionally and p-type doped Ge layers are grown in a reduced-pressure chemical vapour deposition tool on a 200 mm diameter, <001>-oriented, p-type silicon (Si) substrates. Thanks to two Ge growth temperatures and the use of short thermal cycling afterwards, threading dislocation densities down to 10⁷ cmˉ² are obtained. Instead of phosphorous (P) ion implantation in germanium, the authors use in situ phosphorous-doped poly-crystalline Si (poly-Si) in the n-type regions. Secondary ion mass spectrometry revealed that P was confined in poly-Si and did not diffuse in Ge layers beneath. Over a wide range of tested device geometries, production yield was dramatically increased, with almost no short circuits. At 30 °C and at -0.1 V bias, corresponding to the highest dynamic resistance, the median dark current of 10 μm diameter photodiodes is in the 5-20 nA range depending on the size of the n-type region. The dark current is limited by the Shockley-Read-Hall generation and the noise power spectral density of the current by the flicker noise contribution. A responsivity of 0.55 and 0.33 A/W at 1.31 and 1.55 μm, respectively, is demonstrated with a 1.8 μm thick absorption Ge layer and an optimized anti-reflection coating at 1.55 μm. These results pave the way for a cost-effective technology based on group-IV semiconductors.
Twórcy
  • Univ. Grenoble Alpes, CEA-Leti, F-38000 Grenoble, France
  • Univ. Grenoble Alpes, CEA-Leti, F-38000 Grenoble, France
autor
  • Univ. Grenoble Alpes, CEA-Leti, F-38000 Grenoble, France
autor
  • Univ. Grenoble Alpes, CEA-Leti, F-38000 Grenoble, France
  • Univ. Grenoble Alpes, CEA-Leti, F-38000 Grenoble, France
  • Univ. Grenoble Alpes, CEA-Leti, F-38000 Grenoble, France
  • Univ. Grenoble Alpes, CEA-Leti, F-38000 Grenoble, France
  • Univ. Grenoble Alpes, CEA-Leti, F-38000 Grenoble, France
  • Univ. Grenoble Alpes, CEA-Leti, F-38000 Grenoble, France
Bibliografia
  • [1] Mounier, E. & Clouet, A. SWIR Imaging 2022: Technology and Market Trends Report. Yole Group (2022). https://www.yolegroup.com/product/report/swir-imaging-2022/
  • [2] Li, Y. & Ibanez-Guzman, J. LIDAR for autonomous driving: the principles, challenges, and trends for automotive lidar and perception systems. IEEE Signal Proc. Mag. 37, 50-61 (2020). https://doi.org/10.1109/MSP.2020.2973615
  • [3] Yuan, H. et al. Low dark current small pixel large format InGaAs 2D photodetector array development at Teledyne Judson Technologies. Proc. SPIE 8353, 835309 (2012). https://doi.org/10.1117/12.921232
  • [4] Nedelcu, A. et al. III-V detector technologies at Sofradir: Dealing with image quality. Infrared Phys. Technol. 94, 273-279 (2018). https://doi.org/10.1016/j.infrared.2018.09.027
  • [5] Song, B., Shi, B., Tommaso Šuran-Brunelli, S., Zhu, S. & Klamkin, J. Low dark current and high speed InGaAs photodiode on CMOS-compatible silicon by heteroepitaxy. IEEE J .Sel. Top. Quantum Electron. 28, 1-8 (2022). https://doi.org/10.1109/JSTQE.2021.3123052
  • [6] Manda, S. et al. High-definition Visible-SWIR InGaAs Image Sensor Using Cu-Cu Bonding of III-V to Silicon Wafer. in 2019 IEEE International Electron Devices Meeting (IEDM) 16.7.1–16.7.4 (2019). https:/doi.org/10.1109/IEDM19573.2019.8993432
  • [7] Klem, E. J. D., Gregory, C., Temple, D. & Lewis, J. PbS colloidal quantum dot photodiodes for low-cost SWIR sensing. Proc. SPIE 9451, 945104 (2015). https://doi.org/10.1117/12.2178532
  • [8] Georgitzikis, E. et al. Integration of PbS quantum dot photodiodes on silicon for NIR imaging. IEEE Sensors J. 20, 6841-6848 (2020). https://doi.org/10.1109/JSEN.2019.2933741
  • [9] Gréboval, C. et al. Photoconductive focal plane array based on HgTe quantum dots for fast and cost-effective short-wave infrared imaging. Nanoscale 14, 9359-9368 (2022). https://doi.org/10.1039/D2NR01313D
  • [10] Steckel, J. S., Pattantyus-Abraham, A. G., Josse, E., Mazaleyrat, E. & Rochereau, K. 66-1: High Resolution Quantum Dot Global Shutter Imagers. in International Conference on Display Technology 2022 - SID Symposium Digest of Technical Papers 52, 975-977 (2021). https://doi.org/10.1002/sdtp.14852
  • [11] Gregory, C., Hilton, A., Violette, K. & Klem, E. J. D. 66-3: Invited paper: Colloidal quantum dot photodetectors for large format NIR, SWIR, and eSWIR imaging arrays. SID Symposium Digest of Technical Papers 52, 982-986 (2021). https://doi.org/10.1002/sdtp.14854
  • [12] Feng, N.-N. et al. Vertical p-i-n germanium photodetector with high external responsivity integrated with large core Si waveguides. Opt. Express. 18, 96-101 (2010). https://doi.org/10.1364/OE.18.000096
  • [13] Liow, T.-Y. et al. silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization. IEEE J. Sel. Top. Quantum Electron. 16, 307-315 (2010). https://doi.org/10.1109/JSTQE.2009.2028657
  • [14] Chen, L., Dong, P. & Lipson, M. High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding. Opt. Express 16, 11513-11518 (2008). https://doi.org/10.1364/OE.16.011513
  • [15] Virot, L. et al. Germanium avalanche receiver for low power inter-connects. Nat. Commun. 5, 4957 (2014). https://doi.org/10.1038/ncomms5957
  • [16] Huang, M. et al. Germanium on silicon avalanche photodiode. IEEE J. Sel. Top. Quantum Electron. 24, 1-11 (2018). https://doi.org/10.1109/JSTQE.2017.2749958
  • [17] Kang, Y. et al. Monolithic germanium/silicon avalanche photo-diodes with 340 GHz gain–bandwidth product. Nat. Photonics 3, 59-63 (2009). https://doi.org/10.1038/nphoton.2008.247
  • [18] Wanitzek, M., Oehme, M., Schwarz, D., Guguieva, K. & Schulze, J. Ge-on-Si Avalanche Photodiodes for LIDAR Applications. in 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO) 8-12 (2020). https://doi.org/10.23919/MIPRO48935.2020.9245425
  • [19] Ke, S. et al. Design of wafer-bonded structures for near room temperature Geiger-mode operation of germanium on silicon single-photon avalanche photodiode. Appl. Opt. 56, 4646-4653 (2017). https://doi.org/10.1364/AO.56.004646
  • [20] Vines, P. et al. High performance planar germanium-on-silicon single-photon avalanche diode detectors. Nat. Commun. 10, 1086 (2019). https://doi.org/10.1038/s41467-019-08830-w
  • [21] Warburton, R. E. et al. Ge-on-Si single-photon avalanche diode detectors: design, modeling, fabrication, and characterization at wavelengths 1310 and 1550 nm. IEEE Trans. Electron Devices 60, 3807-3813 (2013). https://doi.org/10.1109/TED.2013.2282712
  • [22] Chen, C.-L. et al. An Up-to-1400nm 500MHz Demodulated Time-of-Flight Image Sensor on a Ge-on-Si Platform. in 2020 IEEE International Solid-State Circuits Conference (ISSCC) 98-100 (2020). https://doi.org/10.1109/ISSCC19947.2020.9063107
  • [23] Oehme, M. et al. Backside illuminated “Ge-on-Si” NIR camera. IEEE Sensors J. 21, 18696-18705 (2021). https://doi.org/10.1109/JSEN.2021.3091203
  • [24] Takenaka, M., Morii, K., Sugiyama, M., Nakano, Y. & Takagi, S. Dark current reduction of Ge photodetector by GeO2 surface passivation and gas-phase doping. Opt. Express 20, 8718 (2012). https://doi.org/10.1364/OE.20.008718
  • [25] Zhao, X. et al. High performance p-i-n photodetectors on Ge-on-insulator platform. Nanomaterials 11, 1125 (2021). https://doi.org/10.3390/nano11051125
  • [26] Akatsu, T. et al. Germanium-on-insulator (GeOI) substrates-A novel engineered substrate for future high performance devices. Mater. Sci. Semicond. Process. 9, 444-448 (2006). https://doi.org/10.1016/j.mssp.2006.08.077
  • [27] Aliane, A. et al. Fabrication and characterization of sensitive vertical P-i-N germanium photodiodes as infrared detectors. Semicond. Sci. Technol. 35, 035013 (2020). https://doi.org/10.1088/1361-6641/ab6bf7
  • [28] Rouse, C. et al. Development of low dark current sige near-infrared PIN photodetectors on 300 mm silicon wafers. Opt. Photon J. 6, 61-68 (2016). https://doi.org/10.4236/opj.2016.65009
  • [29] Hartmann, J. M. et al. Impact of the H2 anneal on the structural and optical properties of thin and thick Ge layers on Si; Low temperature surface passivation of Ge by Si. J. Cryst. Growth 312, 532-541 (2010). https://doi.org/10.1016/j.jcrysgro.2009.11.056
  • [30] Prabhakaran, K., Maeda, F., Watanabe, Y. & Ogino, T. Thermal decomposition pathway of Ge and Si oxides: observation of a distinct difference. Thin Solid Films 369, 289-292 (2000). https://doi.org/10.1016/S0040-6090(00)00881-6
  • [31] Dong, Y. et al. Suppression of dark current in germanium-tin on silicon p-i-n photodiode by a silicon surface passivation technique. Opt. Express 23, 18611-18619 (2015). https://doi.org/10.1364/OE.23.018611
  • [32] Shayesteh, M. et al. Optimized laser thermal annealing on germanium for high dopant activation and low leakage current. IEEE Trans. Electron Devices 61, 4047-4055 (2014). https://hal.science/hal-01921394/document
  • [33] Firat, M. et al. In situ phosphorus-doped polycrystalline silicon films by low pressure chemical vapor deposition for contact passivation of silicon solar cells. Sol. Energy 231, 78-87 (2022). https://doi.org/10.1016/j.solener.2021.11.045
  • [34] Rouchon, D., Mermoux, M., Bertin, F. & Hartmann, J.M. Germanium content and strain in Si1−xGex alloys characterized by Raman spectroscopy. J. Cryst. Growth 392, 66-73 (2014). https://doi.org/10.1016/j.jcrysgro.2014.01.019
  • [35] Eneman, G. et al. Impact of donor concentration, electric field, and temperature effects on the leakage current in germanium p+n junctions. IEEE Trans. Electron Devices 55, 2287-2296 (2008). https://doi.org/10.1109/TED.2008.927660
  • [36] Simoen, E. et al. On the temperature and field dependence of trap-assisted tunneling current in Ge p+n junctions. IEEE Electron Device Lett. 30, 562-564 (2009). https://doi.org/10.1109/LED.2009.2017040
  • [37] Daniels, A. Field Guide to Infrared Systems, Detectors, and FPAs. (SPIE Press, 2018).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f47a9c7-1beb-4782-ae63-4ec83e4139f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.