PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and Numerical Characterization of Thermal Bridges in Windows

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Actions aimed at improving the energy performance of buildings increase the share of heat loss through thermal bridges and windows in a building’s energy balance. This is especially true of buildings currently under construc- tion. In addition, it is known that the correct installation of windows is one of the biggest obstacles that must be overcome in order to achieve higher energy efficiency and reduce the impact of linear thermal bridges. Therefore, the study analysed, numerically and experimentally, the energy properties of PVC window frames with improved metal stiffening profiles, which were introduced to reduce the risk of window frame deformation and reduce leakage caused by faulty installation. The value of the frame thermal transmittance coefficient and the linear heat transfer coefficients were determined numerically. The simulation results showed that filling large air spaces with insulation material allowed for the reduction of the Uf frame’s thermal transmittance coefficient by over 10%. Moreover, where the window connects with the wall, there was a reduction in the linear thermal bridges’ influence on heat losses. The reduction in the linear thermal transmittance coefficient Ψ was 9.6%, 1.0%, and 3.5% for the window sill, jamb, and lintel, respectively, compared to a frame without insulation. Moreover, experimental studies were conducted on the influence of the insulation of the PVC window frame with metal closed stiffening profiles on the linear thermal bridge located at the joint with the glass. It was found that the incidence factor Itb decreased by more than 6%. Thus, there is also a positive effect on the linear thermal bridge at the joint of the glass pane with the window frame.
Twórcy
autor
  • Rzeszow University of Technology, Al. Powstańców Warszawy 12, 35–959 Rzeszów, Poland
  • Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • F.H.U. ATUT Marek i Alicja Janeczek, ul. Kościuszki 56, 39-300 Mielec, Poland
  • F.H.U. ATUT Marek i Alicja Janeczek, ul. Kościuszki 56, 39-300 Mielec, Poland
  • Rzeszow University of Technology, Al. Powstańców Warszawy 12, 35–959 Rzeszów, Poland
  • Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • 1. Eurostat: https://ec.europa.eu/eurostat/statisticsexplained/index.php?title=Energy_statistics_-_an_overview#Final_energy_consumption.
  • 2. International Energy Agency Report: „Transition to Sustainable Buildings Strategies and Opportunities to 2050”, https://www.iea.org/reports/transition-to-sustainable-buildings.
  • 3. Directive (EU) 2010/31/EU: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:153:0013:0035:EN:PDF.
  • 4. Directive (EU) 2018/84: https://eur-lex.eu-ropa.eu/legal content/EN/TXT/?uri=uriserv:OJ.L_.2018.156.01.0075.01.ENG
  • 5. United nations economic commission for europe joint task force on energy efficiency standards in buildings. Mapping of existing technologies to enhance energy efficiency in buildings in the UNECE Region; UNECE: Geneva, Switzerland, 2019. https://unece.org/
  • fileadmin/DAM/energy/se/pdfs/geee/study/Final_Master_file_-_March_11_final_submission.pdf
  • 6. Berardi U. Building energy consumption in US, EU, and BRIC countries. Procedia Engineering 2015; 118: 128–136.
  • 7. Mangkuto R.A., Rohmah M., DianAsri A. Design optimisation for window size, orientation, and wall reflectance with regard to various daylight metrics and lighting energy demand: A case study of buildings in the tropics. Applied Energy 2016; 164: 211–219.
  • 8. Polish Ministry of Transport, Construction and Maritime Economy. Regulation of the Minister of Transport, Construction and Maritime Economy of 5 July 2013 on the Technical Conditions That Buildings and Their Location Should Satisfy; Polish Ministry of Transport, Construction and Maritime Economy: Warsaw, Poland, 2015.
  • 9. Kotti S., Teli D., James P.A.B. Quantifying Thermal Bridge Effects and Assessing Retrofit Solutions in a Greek Residential Building. Procedia Environmental Sciences 2017; 38: 306–313.
  • 10. Borgero S., Chiari A. The influence of thermal bridge calculation method on the building energy need: a case study. Energy Procedia 2018; 148: 1042–1049.
  • 11. Peel M.C., Finlayson B.L., McMahon T.A. Updated world map of the Koppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007; 11: 1633–1644.
  • 12. Evola G., Margani G., Marletta L. Energy and cost evaluation of thermal bridge correction in Mediterranean climate. Energy and Buildings 2011; 43: 2385–2393.
  • 13. Mangkuto R.A., Wang S., Aries M.B.C., van Loenen E.J.,. Hensen J.L.M, Comparison between lighting performance of a virtual natural lighting solutions prototype and a real window based on computer simulation. Frontiers of Architectural Research 2014; 3(4): 2095–2635.
  • 14. Brandt E. Moisture in buildings, SBi Directions 224, 2-nd ed. Copenhagen: Danish Building Research Institute, 2013.
  • 15. Tafakkori R., Fattahi A. Introducing novel configurations for double-glazed windows with lower energy loss. Sustainable Energy Technologies and Assessments 2021; 43: 1–10.
  • 16. Ben-Nakhi A.E. Minimizing thermal bridging through window systems in buildings of hot regions. Applied Thermal Engineering 2002; 22: 989–998.
  • 17. Pelss M., Blumberga A., Kamenders A. Thermal Bridge Impact on the Heating Demand in a LowEnergy House. Environmental and Climate Technologies 2010; 4: 76–81.
  • 18. Bergero S., Cavalletti P., Chiari A. Energy refurbishment in existing buildings: Thermal bridge correction according to DM 26/06/2015 limit values. Energy Procedia 2017; 140: 127–140.
  • 19. Misiopecki C., Bouquin M., Gustavsen A., Jelle B. P. Thermal modelling and investigation of the most energy-efficient window position. Energy and Buildings 2018; 158: 1079–1086.
  • 20. Kim S.H., Jeong H., Soo Cho S. A study on changes of window thermal performance by analysis of physical test results in Korea. Energies 2019; 12: 1–17.
  • 21. Paulos J., Berardi U. Optimizing the thermal performance of window frames through aerogel enhancements. Applied Energy 2020; 266: 1–18.
  • 22. Berardi U., Kisilewicz T., Kim S., Lechowska A., Paulos J., Schnotale J. Experimental and numerical investigation of the thermal transmittance of PVC window frames with silica aerogel. Journal of Building Engineering 2020; 32: 1–12.
  • 23. Van Den Bosschea N., Buffel L., Janssens A. Thermal optimization of window frames. Energy Procedia 2015; 78: 2500–2505.
  • 24. Lechowska A., Schnotale J.A., Baldinelli G. Window frame thermal transmittance improvements without frame geometry variations: An experimentally validated CFD analysis. Energy and Buildings 2017; 145: 188–199.
  • 25. Cannavale A., Martellotta F., Berardi U., Rubino Ch., Liuzzi St., De Carlo V., Ayr U. Modelling of an Aerogel-Based “Thermal Break” for Super-Insulated Window Frames. Buildings 2020; 10(60): 1–15.
  • 26. Abdoli Naser S., Haghparast F., Singery M., Sattari Sarbangholi H. Optimization of thermal performance of windows in intermediate housing in cold and dry climate of Tabriz. Iranian (Iranica) Journal of Energy and Environment 2021; 12: 327–336.
  • 27. Baldinelli G., Bianchi F. Windows thermal resistance: Infrared thermography aided comparative analysis among finite volumes simulations and experimental methods. Applied Energy 2014; 136: 250–258.
  • 28. Barnes B., Pagán-Vázquez A., Liesen R. Window related thermal bridges, thermal performance of the exterior envelopes of whole building. XII International Conference, Clearwater, Florida, USA 2013.
  • 29. Cappelletti F., Gasparella A., Romagnoni P., Baggio P. Analysis of the influence of installation thermal bridges on windows performance: The case of clay block walls. Energy and Buildings 2011; 43: 1435–1442.
  • 30. Ibrahim M., Biwole P.H., Wurtz E., Achard P. Limiting windows offset thermal bridge losses using a new insulating coating. Applied Energy 2014; 123: 220–231.
  • 31. Jakubowicz A., Orłoś Zb. Strength of materials. WNT, 1984. (in Polish)
  • 32. Fang Y., Eames P.C., Hyde T.J., Norton B. Complex multi-material insulating frames for windows with evacuated glazing. Solar Energy 2002; 79: 245–261.
  • 33. Gustavsen A., Grynning S., Arasteh D., Jelle B.P., Goudey H. Key elements of and material performance targets for highly insulating window frames. Energy Build. 2011; 43: 2583–2594.
  • 34. Takada K., Hayama H., Mori T., Kikuta K. Thermal insulated PVC windows for residential buildings: feasibility of insulation performance improvement by various elemental technologies. Journal of Asian Architecture and Building Engineering 2020; 20: 340–355.
  • 35. Gojak M.D., Kijanović A.I., Rudonja N.R., Todorović R.I., Experimental and numerical investigation of thermal improvement of window frames. Thermal Science 2021; 25: 2579–2588.
  • 36. International Standard ISO 10077-2 – Thermal performance of windows, doors and shutters – Calculation of thermal transmittance – Part 2: Numerical method for frames, 2017.
  • 37. Kwaśniewski L. Application of grid convergence index in FE computation. Bulletin of the Polish Academy of Sciences 2013; 61: 123–128.
  • 38. Journal of Fluids Engineering Editorial Policy Statement on the Control of Numerical Accuracy, https://www.asme.org/wwwasmeorg/media/resourcefiles/shop/journals/jfenumaccuracy.pdf
  • 39. International Standard ISO 10211 – Thermal bridges in building construction-Heat flows and Surface temperatures-Detailed calculations, 2017.
  • 40. International Standard ISO 6946, Building components and building elements – thermal resistance and thermal transmittance – calculation method, 2017.
  • 41. Rahman Al-Kassir A., Fernandez J., Tinaut F.V., Castro F. Thermographic study of energetic installations. Applied Thermal Engineering 2005; 25: 183–190.
  • 42. Marino B.M., Muñoz N., Thomas L.P. Estimation of the surface thermal resistances and heat loss by conduction using thermography. Applied Thermal Engineering 2017; 114: 1213–1221.
  • 43. International Standard ISO 18434-1 Condition monitoring and diagnostics of machines – Thermography – Part1: General procedures.
  • 44. Nardi I., Ambrosini D., Paoletti D., Sfarra St. Combining Infrared Thermography and Numerical Analysis for Evaluating Thermal Bridges In Buildings: A Case Study. Int. Journal of Engineering Research and Applications 2015; 5: 67–76.
  • 45. Rüdisser D., Asdrubali F., Baldinelli G., Bianchi F. A quantitative methodology to evaluate thermal bridges in buildings. Third International Conference on Applied Energy, Perugia, Italy 2011: 1241–1252.
  • 46. O’Grady M., Lechowska A., Harte A. M. Infrared thermography technique as an in-situ method of assessing heat loss through thermal bridging. Energy and Buildings 2017; 135: 20–32.
  • 47. McLeod R.S., Wagner W., Hopfe C.J. Numerical derivation and validation of the angular, hemispherical and normal emissivity and reflectivity of common window glass. Building and Environment 2022; 207: 1–20.
  • 48. Bałon P., Rejman E., Smusz R., Kiełbasa B. Experimental tests of window joinery in the scope of meeting technical requirements. Mechanik 2022; 8–9.
  • 49. Uhryński A., Bembenek M. The thermographic analysis of the agglomeration process in the roller press of pillow-shaped briquettes. Materials 2022.
  • 50. Bembenek M., Uhryński A. The use of thermography to determine the compaction of a saddle-shaped briquette produced in an innovative roller press compaction unit. Acta Mechanica et Automatica 2022.
  • 51. Coleman H.W., Steele W.G. Experimentation, Validation, and Uncertainty Analysis for Engineers, third ed. John Wiley & Sons, Inc, 2009.
  • 52. Evaluation of measurement data – Guide to the expression of uncertainty in measurement, GUM, 2008.
  • 53. Muniz P. R., de Araújo Kalid R., Cani S. P. N., da Silva Magalhãe R. Handy method to estimate uncertainty of temperature measurement by infrared thermography. Optical Engineering 2014; 53: 1–7.
  • 54. Bałon P., Rejman E., Smusz R., Kiełbasa, Influence of the shape of reinforcing window profiles on the strength and torsional stiffness of windows. Mechanik 2022; 8–9.
  • 55. Bałon P., Rejman E., Smusz R., Kiełbasa. Comparison of the open and closed profile in the PVC profiles of a window frame. Mechanik 2022; 7.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f40e4c2-b4ac-43a9-b70e-50b5632d6741
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.