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Abstract: In this paper, we introduce multivariable extension
of m sequences of the Fibonacci number polynomials of order m
and a new Sn matrix of order m. Consequently, we discuss various
properties of the Sn matrix. The polynomial, derived therefrom,
hj, contains m multiple variables which improves the cryptography
protection and security, and complexity increases as m increases.
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1. Introduction

The Fibonacci p-numbers are defined by the recurrence relation:

Fp(n) = Fp(n− 1) + Fp(n− p− 1) for n > p+ 1 (1)

with the initial seeds

Fp(1) = Fp(2) = Fp(3) = · · · = Fp(p+ 1) = 1 (2)

where p = 0, 1, 2, 3, · · ·.
For p = 1, the Fibonacci p-numbers coincide with the classical Fibonacci

numbers, Fn = F1(n) (see Stakhov, 1977). The Fibonacci numbers, Fn and
golden mean,

τ = lim
n−→∞

Fn

Fn−1

=
1 +

√
5

2
(3)

have appeared in arts, sciences, high energy physics and information and coding
theory (see Cover and Thomas, 1991; El Naschie, 2009; Esmaeili, Gulliver and
Kakhbod, 2009; MacWilliams and Sloane, 1977, or Stakhov, 2006).
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In 1960, Miles (1960) introduced the generalized k-Fibonacci numbers by
the following recurrence relation

Fn = Fn−1 + Fn−2 + · · ·+ Fn−k, n > k ≥ 2

with the initial seeds

F1 = F2 = · · · = Fn−k = 0, Fk−1 = Fk = 1.

Then, Er (1984) introduced k sequences of the Fibonacci numbers of order
k, by the following recurrence relation

ui
n = c1u

i
n−1 + c2u

i
n−2 + · · ·+ cku

i
n−k, n ≥ 2

with the initial value for ui
n being given for 1− k ≤ n ≤ 0 through the relation:

ui
n =

{

1 if i = 1− n,
0 otherwise,

where c1, c2, · · · , ck are constant coefficients, i is an index, not an exponent, and
the index i is an integer having only k values: i = 1, 2, 3, · · · , k with k ≥ 2, while
ui
n is the nth term of the ith generalized Fibonacci numbers.

Er (1984) showed that
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where

A =



















c1 c2 c3 · · · ck−1 ck
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0



















.

Again, Er (1984) derived the following relation

Gn+1 = AGn

where

Gn =











u1
n u2

n · · · uk
n

u1
n−1 u2

n−1 · · · uk
n−1

...
...

. . .
...

u1
n−k+1 u2

n−k+1 · · · uk
n−k+1
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The Fibonacci polynomials are defined by the Fibonacci-like recurrence re-
lations. In 1883, the famous Belgian mathematician Eugene Charles Catalan∗

defined the recurrence relation

Fn(x) = xFn−1(x) + Fn−2(x), n ≥ 3

with the initial seeds

F1(x) = 1, F2(x) = x.

Later on, the German mathematician Ernst Jacobsthal defined the Fibonacci
polynomials by the following recurrence relation

Jn(x) = Jn−1(x) + xJn−2(x), n ≥ 3

with the initial seeds

J1(x) = J2(x) = 1.

We would also like to refer to Paul F. Byrd (see, e.g., Byrd, 1975), who
defined the recurrence relation

φn(x) = xφn−1(x) + φn−2(x), n ≥ 2

with the initial seeds

φ0(x) = 0, φ1(x) = 1.

Nalli and Haukkanen (2009) introduced h(x)-Fibonacci polynomials, Fh,n(x)
(where h(x) is a polynomial with real coefficients) with the recurrence relation

Fh,n+1(x) = h(x)Fh,n(x) + Fh,n−1(x), n ≥ 1

and the initial seeds

Fh,0(x) = 0, Fh,1(x) = 1.

We obtain therefrom the Catalan’s Fibonacci polynomials for h(x) = x and
Byrd’s Fibonacci polynomials for h(x) = 2x.

Prasad (2015) introduced h(x) (> 0) extension of m sequences of the Fi-
bonacci numbers polynomials of order m, F i

h(n, x), by the recurrence relation

F i
h(n, x) = h(x)F i

h(n− 1, x) + F i
h(n− 2, x) + · · ·+ F i

h(n−m,x) (4)

with the initial values for F i
h(n, x) being given for 1 − k ≤ n ≤ 0 through the

relation:

F i
h(n, x) =

{

1 if n+ i = 1,
0 otherwise,

∗In the literature, the constructs recalled or implied here, are considered as Fibonacci,
Bernoulli, Euler and Lucas numbers or sequences, see e.g., Koshy (2001) (ed.)
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where h(x) (> 0) is a polynomial with real coefficients, i is an index, not an
exponent, and the index i is an integer having only m values: i = 1, 2, 3, · · · ,m
with m ≥ 2, and F i

h(n, x) is the nth term of the ith generalized Fibonacci num-
bers polynomials.

In this paper, we introduce hj (> 0) extension of m sequences of the Fi-
bonacci numbers polynomials of order m, F i

h1,h2,···,hm

(n, x1, x2, · · · , xm), by the
recurrence relation

F i
h1,h2,···,hm

(n, x1, · · · , xm) =

h1F
i
h1,h2,···,hm

(n− 1, x1, · · · , xm) +

h2F
i
h1,h2,···,hm

(n− 2, x1, · · · , xm)

+ · · ·+ hmF i
h1,h2,···,hm

(n−m,x1, · · · , xm) (5)

with the initial values for F i
h1,h2,···,hm,(n, x1, x2, · · · , xm) being given for 1− k ≤

n ≤ 0 through the relation:

F i
h1,h2,···,hm

(n, x1, x2, · · · , xm) =

{

1 if n+ i = 1,
0 otherwise,

where j = 1, 2, · · · ,m, the index i is an integer having only m values: i =
1, 2, 3, · · · ,m with m ≥ 2, and hj (> 0) are polynomials, while x1, x2, · · · , xm

are non negative integers, so that hj are positive integers and

F i
h1,h2,···,hm

(n, x1, x2, · · · , xm)

is the nth term of the ith generalized Fibonacci numbers polynomials.

The characteristic equation of m sequences of the Fibonacci numbers poly-
nomials of order m is

ym − ym−1 − ym−2 − · · · − y − 1 = 0. (6)

The equation (6) has m roots and only one real positive root when m is even or
odd but when m is even it has only one negative real root also. When m −→ ∞
then the positive real root is 2 and the negative real root is -1.
We write
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Qh1,h2,···,hm

















F i
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F i
h1,h2,···,hm

(n− 1, x1, x2, · · · , xm)
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F i
h1,h2,···,hm

(n−m+ 1, x1, x2, · · · , xm)

















where

Qh1,h2,···,hm
=



















h1 h2 h3 · · · hm−1 hm

1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0



















.

2. The S
n
matrix and its properties

In this section, we define a new Sn matrix of order m. The matrix Sn is given
by

Sn =









F (1, n) F (2, n) · · · F (m,n)
F (1, n− 1) F (2, n− 1) · · · F (m,n− 1)

· · · · · · · · · · · ·
F (1, n−m+ 1) F (2, n−m+ 1) · · · F (m,n−m+ 1)









, (7)

where F (v, w) = F v
h1,h2,···,hm

(w, x1, x2, · · · , xm).

We prove that Sn = Qn
h1,h2,···,hm

.
Proof: We refer to the previously introduced notation F (v, w).

Sn =



















h1 h2 h3 · · · hm−1 hm

1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0



























F (1, n− 1) F (2, n− 1) · · · F (m,n− 1)
F (1, n− 2) F (2, n− 2) · · · F (m,n− 2)

· · · · · · · · · · · ·
F (1, n−m) F (2, n−m) · · · F (m,n−m)









= Qh1,h2,···,hm
Sn−1.

Therefore, we can write

Sn = Qh1,h2,···,hm
(Qh1,h2,···,hm

Sn−2) = · · · = Qn−1
h1,h2,···,hm

S1.
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Now,

S1 =



















h1 h2 h3 · · · hm−1 hm

1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0



























F (1, 0) F (2, 0) · · · F (m, 0)
F (1,−1) F (2,−1) · · · F (m,−1)

· · · · · · · · · · · ·
F (1, 1−m) F (2, 1−m) · · · F (m, 1−m)









=



















h1 h2 h3 · · · hm−1 hm

1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0





























1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1











= Qh1,h2,···,hm

Hence, Sn = Qn
h1,h2,···,hm

.

Theorem 1 For matrix Sn of order m in (7) for n ≥ 1 and m ≥ 2

Det Sn =

{

(hm)n if m is odd,
(−1)n(hm)n if m is even.

Proof:
Det Sn = Det (Qn

h1,h2,···,hm

) = (Det Qh1,h2,···,hm
)n as Det Qh1,h2,···,hm

=

(−1)m+1hm for m ≥ 2.
Hence, we get

Det Sn =

{

(hm)n if m is odd,
(−1)n(hm)n if m is even.

3. Fibonacci encryption and decryption method

We represent the initial message in the form of the non singular square matrix
M of orderm where m ≥ 2. We take the Sn matrix of order m as the encryption
matrix and its inverse matrix S−1

n as the decryption matrix. We refer to the
transformation M×Sn = E as encryption and to the transformation E×S−1

n =
M as decryption. We define E as code matrix.
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4. Roles of multiple variables

The role of multiple variables is very important in encryption and decryption
according to this method. By imposing m multiple variables x1, x2, · · · , xm, we
can consider the combinations x1x2, x1x3, x1x4, x1x5, · · ·, x1xm, x2x3, x2x4, · · ·,
x2xm, x1x2x3, x1x2x4, x1x2x5, · · ·, x1x2xm, x1x2x3x4, x1x2x3x5, · · · , x1x2x3xm

etc. i.e. all the possible combinations of the variables. They are used in en-
cryption and decryption for security purposes. When the number of variables
increases the security and complexity of this methods also increases.

5. Conclusion

In this paper, encryption and decryption is proposed, based on multiple vari-
ables x1, x2, x3, · · · , xm and complexity of this method increases due to the use
of multiple variables. In the future, we hope that this method can lead to
hybrid cryptosystems, which will be very fast and effective in encryption and
decryption.
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