PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simple computational methods in predicting limit load of high-strength cold-formed sections due to local buckling: a case study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cold-formed thin-walled sections are prone to local buckling caused by residual stresses, geometrical imperfections and inconsistency of material properties. We present a real case of buckling failure and conduct a numerical and experimental study aimed to identify methods capable of predicting such failures. It is important because designers of structures are getting more FEA-oriented and tend to avoid lengthy procedures of cold-formed structures design. Currently adopted methods are complicated and require patience and caution from a designer which is reasonable in case of the most important structural members but not necessarily so in ordinary design. Since it is important, we offer an insight into several FEA and manual methods which were sufficient to predict the failure while remaining fairly simple. Using a non-uniform partial safety factor was still necessary. We hope that this paper will be of interest for people performing a lot of routine analyses and worrying about reliability of their computations.
Rocznik
Tom
Strony
73--82
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
  • Gdansk University of Technology,Faculty of Ocean Engineering and Ship Technology, Poland
autor
  • Gdansk University of Technology,Faculty of Ocean Engineering and Ship Technology, Poland
autor
  • Gdansk University of Technology, Faculty of Mechanical Engineering, Poland
  • Gdansk University of Technology, Faculty of Mechanical Engineering, Poland
Bibliografia
  • 1. Abambres M, Quach W-M. Residual stresses in steel members: a review of available analytical expressions. International Journal of Structural Integrity. Emerald; 2016 Feb;7(1):70–94.
  • 2. Bielski P, Wysocki O, Czyżewicz J. Failure of cold-formed beam: How does residual stress affect stability? Shell Structures: Theory and Applications. 2017;4:529-32. CRC Press / Balkema.
  • 3. Cold-Formed Steel Design Manual, American Iron and Steel Institute, 2013.
  • 4. Crisfield MA. A fast incremental/iterative solution procedure that handles “snap-through.” Computational Methods in Nonlinear Structural and Solid Mechanics. Elsevier; 1981;55–62.
  • 5. Eurocode 3: Design of Steel Structures, Parts 1-1, 1-3 and 1-5, European Comittee for Standarization, 2004.
  • 6. Ingvarsson L. Cold-forming residual stresses effect on buckling. University of Missouri-Rolla. 1975.
  • 7. Laim L, Rodrigues JPC, Silva LS da. Experimental and numerical analysis on the structural behaviour of coldformed steel beams. Thin-Walled Structures. Elsevier BV; 2013 Nov;72:1–13.
  • 8. Lu Y, Li W, Zhou T, Wu H. Novel local buckling formulae for cold-formed C-section columns considering end condition effect. Thin-Walled Structures. Elsevier BV; 2017 Jul;116:265–76.
  • 9. Niklas K. Strength analysis of a large-size supporting structure for an offshore wind turbine. Polish Maritime Research. 2017 Apr 25;24(s1):156-65.
  • 10. Olovsson L, Simonsson K, Unosson M. Shear locking reduction in eight-noded tri-linear solid finite elements. Computers & structures. 2006 Feb 1;84(7):476-84.
  • 11. Quach WM. Residual stresses in cold-formed steel sections and their effect on column behaviour (Doctoral dissertation, The Hong Kong Polytechnic University). 2005.
  • 12. Quach WM, Qiu P. Strength and ductility of corner materials in cold-formed stainless steel sections. Thin- Walled Structures. Elsevier BV; 2014 Oct;83:28–42.
  • 13. Schafer B., Pekoz T. Computational modeling of coldformed steel: characterizing geometric imperfections and residual stresses. Journal of Constructional Steel Research. Elsevier BV; 1998 Sep;47(3):193–210.
  • 14. Schafer BW, Pekoz T. Direct strength prediction of coldformed steel members using numerical elastic buckling solutions. 14th International Specialty Conference on Cold- Formed Steel Structures. 1998;69-76.
  • 15. Szymczak C, Kujawa M. On local buckling of cold-formed channel members. Thin-Walled Structures. Elsevier BV; 2016 Sep;106:93–101.
  • 16. Winful D, Cashell KA, Afshan S, Barnes AM, Pargeter RJ. Elevated temperature material behaviour of high-strength steel. Proceedings of the Institution of Civil Engineers - Structures and Buildings. Thomas Telford Ltd.; 2017 Nov;170(11):777–87.
  • 17. Wang J, Afshan S, Schillo N, Theofanous M, Feldmann M, Gardner L. Material properties and compressive local buckling response of high strength steel square and rectangular hollow sections. Engineering Structures. Elsevier BV; 2017 Jan;130:297–315.
  • 18. Weng CC, Pekoz T. Residual Stresses in Cold‐Formed Steel Members. Journal of Structural Engineering. American Society of Civil Engineers (ASCE); 1990 Jun;116(6):1611–25.
  • 19. Woloszyk K, Kahsin M, Garbatov Y. Numerical assessment of ultimate strength of severe corroded stiffened plates. Engineering Structures. Elsevier BV; 2018 Aug;168:346–54.
  • 20. Wong YW. Analysis of wrinkle patterns in prestressed membrane structures. PhD Thesis, University of Cambridge, Department of Engineering, August. 2000 Aug.
  • 21. Yu C, Schafer BW. Local Buckling Tests on Cold- Formed Steel Beams. Journal of Structural Engineering. American Society of Civil Engineers (ASCE); 2003 Dec;129(12):1596–606.
  • 22. Yu C, Schafer BW. Simulation of cold-formed steel beams in local and distortional buckling with applications to the direct strength method. Journal of Constructional Steel Research. Elsevier BV; 2007 May;63(5):581–90.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9f3a3daf-23ed-48d4-8ee7-964c764b7d4b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.